留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温风洞极低露点原位在线测量技术研究

王斌 许振宇 张文清 阚瑞峰 盖文

王斌, 许振宇, 张文清, 等. 低温风洞极低露点原位在线测量技术研究[J]. 实验流体力学, 2023, 37(2): 105-114 doi: 10.11729/syltlx20210062
引用本文: 王斌, 许振宇, 张文清, 等. 低温风洞极低露点原位在线测量技术研究[J]. 实验流体力学, 2023, 37(2): 105-114 doi: 10.11729/syltlx20210062
WANG B, XU Z N, ZHANG W Q, et al. Research on ultra low dew point in-situ on-line measurement technology for cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 105-114 doi: 10.11729/syltlx20210062
Citation: WANG B, XU Z N, ZHANG W Q, et al. Research on ultra low dew point in-situ on-line measurement technology for cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 105-114 doi: 10.11729/syltlx20210062

低温风洞极低露点原位在线测量技术研究

doi: 10.11729/syltlx20210062
基金项目: 国家自然科学基金项目(11602292,61801479)
详细信息
    作者简介:

    王斌:(1983—),男,四川绵阳人,副研究员。研究方向:风洞测试,视觉测量,图像处理,人工智能。通信地址:四川省绵阳市涪城区二环路南段6号12信箱3分箱(621000)。E-mail:nudtwangbin@163.com

    通讯作者:

    E-mail:549816386@qq.com

  • 中图分类号: O355

Research on ultra low dew point in-situ on-line measurement technology for cryogenic wind tunnel

  • 摘要: 面向低温风洞极低露点原位在线测量需求,开展了基于激光吸收光谱的宽温域、高精度、极低露点原位在线测量技术研究。分析了激光吸收光谱露点测量技术原理,开展了吸收谱线选型、光谱参数标定和光谱信号处理方法研究,测量了低温平台原位在线露点和0.3 m低温引导风洞露点,并与冷镜式露点仪比较了测量精度。研究结果表明:激光吸收光谱露点测量技术可以实现宽温域、高精度、原位在线露点测量,露点测量范围–100~30 ℃,测量误差小于1 ℃,测量时间低于1 s,可满足低温风洞极低露点测量需求。
  • 图  1  TDLAS露点测量开放光路示意图[15]

    Figure  1.  Schematic diagram of open optical path for TDLAS dew point measurement[15]

    图  2  TDLAS风洞试验段露点原位在线测量示意图

    Figure  2.  Schematic diagram of in-situ on-line measurement of dew point with TDLAS in wind tunnel test section

    图  3  TDLAS测量原理图

    Figure  3.  Schematic diagram of TDLAS measurement

    图  4  水汽吸收带强度

    Figure  4.  Strength of water vapor absorption band

    图  5  典型状态模拟吸收光谱

    Figure  5.  Typical state simulated absorption spectrum

    图  6  水汽吸收峰值随露点的变化

    Figure  6.  Variation of H2O absorption peak with dew point

    图  7  线强随温度的变化

    Figure  7.  Variation of line strength with temperature

    图  8  直接吸收、波长调制结合露点反演算法

    Figure  8.  Direct absorption, wavelength modulation and dew point inversion algorithm

    图  9  低温平台光谱标定

    Figure  9.  Spectral calibration with cryogenic platform

    图  10  温湿度箱内原位测量

    Figure  10.  In-situ measurement in temperature and humidity box

    图  11  TDLAS与冷镜露点测量结果对比(−10~30 ℃)

    Figure  11.  Comparison of TDLAS and cold mirror dew point measure-ment results from −10 ℃ to 30 ℃

    图  12  低露点抽取式测量多次反射筒体设计图和实物

    Figure  12.  The multiple reflection cylinder for low dew point extraction measurement(design drawing and physical object)

    图  13  低露点抽取式测量

    Figure  13.  Low dew point extraction measurement

    图  14  −90 ~−10 ℃露点TDLAS与MBW373测量结果对比

    Figure  14.  The comparison of TDLAS and MBW373 measurement results from −90 ℃ to −10 ℃

    图  15  TDLAS低温平台原位露点测量试验示意图

    Figure  15.  Schematic diagram of in-situ dew point measurement test of TDLAS low temperature platform

    图  17  原位露点测量结果

    Figure  17.  In-situ dew point measurement results

    图  18  抽取式TDLAS与冷镜式露点仪测量结果对比

    Figure  18.  Comparison of dew point measurement results between extraction TDLAS and cold mirror dew point meter

    图  19  TDLAS原位测量与抽取式测量结果对比

    Figure  19.  Comparison of TDLAS in-situ measurement and extraction measurement results

    图  16  低温平台试验

    Figure  16.  Low temperature platform experiment

    图  20  0.3 m低温引导风洞中冷镜式露点仪与TDLAS露点测量结果

    Figure  20.  Dew point measurement results of cold mirror dew point instrument and TDLAS in 0.3 m low temperature guide wind tunnel

    表  1  选择光谱谱线参数和对应激光器

    Table  1.   Selection of spectral line parameters and corresponding lasers

    激光器吸收谱线/
    (cm−1)
    线强参数/
    (cm−1·molecule−1)
    露点测量
    覆盖范围/ ℃
    Laser 2–2626 nm
    38071.585×10−19−100~−40
    Laser 3–1854 nm
    53942.580×10−20−95~−25
    Laser 1–1383 nm
    72236.374×10−22−60~30
    72268.714×10−21
    72281.848×10−21
    下载: 导出CSV

    表  2  TDLAS与冷镜式露点仪测量(计量)对比

    Table  2.   Measurement results of TDLAS and cold mirror dew point instrument

    设定露点/℃TDLAS测量/℃MBW373测量/℃偏差/℃
    −100−99.10−100.000.90
    −90−91.10−91.900.80
    −80−79.39−79.880.49
    −70−69.55−69.850.30
    −60−59.15−59.590.44
    −50−50.35−50.700.35
    −40−39.70−40.100.40
    −30−29.93−30.100.17
    −20−19.83−19.970.14
    −10−10.75−10.66−0.09
    0−0.75−0.780.03
    1010.369.980.38
    2020.5420.190.45
    3031.1030.790.31
    下载: 导出CSV
  • [1] 廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 1–6, 20. doi: 10.11729/syltlx20130102

    LIAO D X, HUANG Z L, CHEN Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1–6, 20. doi: 10.11729/syltlx20130102
    [2] 黄知龙, 周平, 顾正华, 等. 大型低温风洞中的测控技术设计需求[C]//空气动力学会测控技术第六届六次测控学术交流会论文集. 2015: 168-171.
    [3] 李萍, 王晓蕾, 林明峰, 等. 冷镜式露点仪研究[J]. 计测技术, 2010, 30(S1): 39–41.
    [4] 马延平, 陈振林, 蒋志忠, 等. 影响冷镜式露点仪测量准确度因素分析及解决方法研究[J]. 仪表技术与传感器, 2006(9): 17–18. doi: 10.3969/j.issn.1002-1841.2006.09.008

    MA Y P, CHEN Z L, JIANG Z Z, et al. Analysis on measurement accuracy actors of dew-point hygrometer[J]. Instrument Technique and Sensor, 2006(9): 17–18. doi: 10.3969/j.issn.1002-1841.2006.09.008
    [5] 姚路, 刘文清, 阚瑞峰, 等. 小型化TDLAS发动机测温系统的研究及进展[J]. 实验流体力学, 2015, 29(1): 71–76. doi: 10.11729/syltlx20140025

    YAO L, LIU W Q, KAN R F, et al. Research and develop-ment of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 71–76. doi: 10.11729/syltlx20140025
    [6] 胡尚炜, 殷可为, 涂晓波, 等. 基于中红外吸收光谱技术测量高温流场CO浓度研究[J]. 实验流体力学, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126

    HU S W, YIN K W, TU X B, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126
    [7] 陶波, 王晟, 胡志云, 等. TDLAS 技术二次谐波法测量发动机温度[J]. 实验流体力学, 2015, 29(2): 68–72. doi: 10.11729/syltlx20140062

    TAO B, WANG S, HU Z Y, et al. Engine temperature measurement based on TDLAS second harmonic technique[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 68–72. doi: 10.11729/syltlx20140062
    [8] 卢伟业, 朱晓睿, 李越胜, 等. TDLAS直接吸收法和波长调制法在线测量CO2的比较[J]. 红外与激光工程, 2018, 47(7): 0717002. doi: 10.3788/IRLA201847.0717002

    LU W Y, ZHU X R, LI Y S, et al. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering, 2018, 47(7): 0717002. doi: 10.3788/IRLA201847.0717002
    [9] WEI Y B, CHANG J, LIAN J, et al. Study of a distributed feedback diode laser based hygrometer combined Herriot-gas cell and waterless optical components[J]. Photonic Sensors, 2016, 6(3): 214–220. doi: 10.1007/s13320-016-0320-1
    [10] MALLORY W T Jr. Large scale wind tunnel humidity sensor using laser diode absorption spectroscopy[D]. Tennessee: Vanderbilt University, 2017.
    [11] THORNBERRY T D, ROLLINS A W, GAO R S, et al. A two-channel, tunable diode laser-based hygrometer for mea-surement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere[J]. Atmospheric Measurement Techniques, 2015, 8(1): 211–224. doi: 10.5194/amt-8-211-2015
    [12] BUCHHOLZ B, KÜHNREICH B, SMIT H G J, et al. Validation of an extractive, airborne, compact TDL spectro-meter for atmospheric humidity sensing by blind intercom-parison[J]. Applied Physics B, 2013, 110(2): 249–262. doi: 10.1007/s00340-012-5143-1
    [13] BUCHHOLZ B, AFCHINE A, KLEIN A, et al. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data[J]. Atmospheric Measurement Techniques, 2017, 10(1): 35–57. doi: 10.5194/amt-10-35-2017
    [14] BUCHHOLZ B, KALLWEIT S, EBERT V. SEALDH-II-an autonomous, holistically controlled, first principles TDLAS hygrometer for field and airborne applications: design-setup-accuracy/stability stress test[J]. Sensors(Basel), 2016, 17(1): 68. doi: 10.3390/s17010068
    [15] SARGENT M R, SAYRES D S, SMITH J B, et al. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper tropos-phere and lower stratosphere[J]. The Review of Scientific Instruments, 2013, 84(7): 074102. doi: 10.1063/1.4815828
    [16] MURPHY D M, KOOP T. Review of the vapour pressures of ice and supercooled water for atmospheric applications[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(608): 1539–1565. doi: 10.1256/qj.04.94
    [17] ROTHMAN L S, GORDON I E, BABIKOV Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4–50. doi: 10.1016/j.jqsrt.2013.07.002
    [18] 聂伟, 阚瑞峰, 许振宇, 等. 基于TDLAS技术的水汽低温吸收光谱参数测量[J]. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204

    NIE W, KAN R F, XU Z Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  170
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-09-06
  • 录用日期:  2021-09-19
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日