留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究

巩绪安 张鑫 马兴宇 范子椰 唐湛棋 姜楠

巩绪安,张鑫,马兴宇,等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210041
引用本文: 巩绪安,张鑫,马兴宇,等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学,2022,36(X):1-9 doi: 10.11729/syltlx20210041
GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210041
Citation: GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20210041

柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究

doi: 10.11729/syltlx20210041
基金项目: 气动噪声控制重点实验室开放课题(ANCL20200105);国家自然科学基金(11902218,11732010,11972251,11872272,11802195);国家重点研发计划(2018YFC0705300)
详细信息
    作者简介:

    巩绪安:(1999—),男,安徽铜陵人,硕士研究生。研究方向:基于翼型前缘分离的主动和被动流动控制方法。通信地址:天津市天津大学北洋园校区36楼412号(300354)。E-mail:xagong@yeah.net

    通讯作者:

    E-mail:xingyuma@tju.edu.cn

  • 中图分类号: O357

Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis

  • 摘要: 本文采用柔性锯齿形尾缘进行了流动分离控制风洞实验。利用高频响热线风速仪测量了翼型尾流场,结合瞬时强度因子迭代算法,在时域、频域提取出多尺度湍流相干结构,分析了弹性振动和柔性形变对扰动传播不稳定性的影响。实验结果表明:尾流中分离区厚度减小5%弦长,柔性锯齿形尾缘跟随来流自适应变形摆动,吸收了约20%的尾缘剪切层中的湍动能,产生的大尺度扰流涡持续传递至前缘剪切层,减弱了很大范围低频带宽内的功率谱密度,具有良好的降噪效果;脱落涡中相干结构的振幅和发生频率显著削弱,对尾流分离区边界移动、大型涡包破碎和抑制传播的作用非常明显。
  • 图  1  直流式风洞

    Figure  1.  Straight-type wind tunnel

    图  2  实验示意图

    Figure  2.  Schematic diagram of the experiment

    图  3  三种控制工况

    Figure  3.  Three control conditions

    图  4  无量纲脉动速度均方根

    Figure  4.  Dimensionless rms of fluctuation velocity

    图  5  不同工况下的无量纲预乘能谱

    Figure  5.  Dimensionless pre-multiplied energy spectra under different working conditions

    图  6  尾缘附近小波系数云图

    Figure  6.  Contour of wavelet coefficientnear trailing edge

    图  7  不同频率尺度小波能量分布图

    Figure  7.  Wavelet energy distribution at different scales

    图  8  平坦因子在法向上的分布

    Figure  8.  Flat factor distribution in normal direction

    图  9  前缘和尾缘剪切层旋涡脱落规律

    Figure  9.  Vortex shedding law of leading edge and trailing edge shear layer

    图  10  无量纲功率谱密度图

    Figure  10.  Dimensionless power spectral density diagram

    图  11  前缘剪切层子波系数云图

    Figure  11.  Contour of Wavelet coefficient at leading edge shear layer

    图  12  提取相干结构的迭代算法

    Figure  12.  Iterative algorithm for extracting coherent structures

    图  13  不同频率尺度相干结构之间的激发关系

    Figure  13.  Stimulation among coherent structures of different scales

    图  14  不同频率尺度下相干结构的无量纲相位平均图

    Figure  14.  Dimensionless phase average diagram of coherent structures at different scales

    图  15  柔性锯齿形尾缘扰流示意图

    Figure  15.  Schematic figure of flexible serrated trailing edge

    表  1  不同频率尺度相干结构的发生频率变化率

    Table  1.   Change rates of frequency of different scale coherent structures compared with no control condition

    频率尺度Sf刚性尾缘工况
    发生频率变化率
    弹性尾缘工况
    发生频率变化率
    柔性尾缘工况
    发生频率变化率
    0.11~0.22 –24% –20% –42%
    0.22~0.44 –15% 11% –54%
    0.44~0.89 12% 34% –40%
    0.89~1.77 23% 12% –39%
    1.77~3.55 25% 8% –18%
    3.55~7.10 35% 9% –23%
    7.10~14.20 80% 23% –25%
    下载: 导出CSV
  • [1] 罗振兵,夏智勋,邓雄,等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报,2017,35(2):252-264,251. doi: 10.7638/kqdlxxb-2017.0053

    LUO Z B,XIA Z X,DENG X,et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica,2017,35(2):252-264,251. doi: 10.7638/kqdlxxb-2017.0053
    [2] 贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用,2017(2):56. doi: 10.7638/kqdlxxb-2017.0053
    [3] PASQUALE L,DURANTE D,BROGLIA R. Flow separation prevention around a NACA0012 profile through multivariable feedback controlled plasma actuators[J]. Computers & Fluids,2019,182:85-107. doi: 10.1016/j.compfluid.2019.02.015
    [4] ZHOU Y W,HOU L F,HUANG D G. The effects of Mach number on the flow separation control of airfoil with a small plate near the leading edge[J]. Computers & Fluids,2017,156:274-282. doi: 10.1016/j.compfluid.2017.07.014
    [5] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences,2002,38(4-5):389-420. doi: 10.1016/S0376-0421(02)00010-6
    [6] HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics,2017,819:228-257. doi: 10.1017/jfm.2017.176
    [7] CHONG T P,VATHYLAKIS A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Journal of Sound and Vibration,2015,354:65-90. doi: 10.1016/j.jsv.2015.05.019
    [8] ARCE LEÓN C,MERINO-MARTÍNEZ R,RAGNI D,et al. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations[J]. Experiments in Fluids,2016,57(12):1-22. doi: 10.1007/s00348-016-2272-z
    [9] 乔渭阳,仝帆,陈伟杰,等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报,2018,36(1):98-121. doi: 10.7638/kqdlxxb-2017.0162

    QIAO W Y,TONG F,CHEN W J,et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica,2018,36(1):98-121. doi: 10.7638/kqdlxxb-2017.0162
    [10] TURNER J M,KIM J W. Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall[J]. Physics of Fluids,2020,32(6):065103. doi: 10.1063/5.0009664
    [11] 张攀峰,王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报,2008,34(4):443-446.

    ZHANG P F,WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actua-tor in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics,2008,34(4):443-446.
    [12] 吴鋆,王晋军,李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006

    WU J,WANG J J,LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006
    [13] 黄勇,王万波,黄宗波,等. 等离子体对翼型流动分离控制历程的PIV试验研究[J]. 实验流体力学,2011,25(6):23-27. doi: 10.3969/j.issn.1672-9897.2011.06.005

    HUANG Y,WANG W B,HUANG Z B,et al. PIV measurement on airfoil flow separation control course by plasma actuation[J]. Journal of Experiments in Fluid Mechanics,2011,25(6):23-27. doi: 10.3969/j.issn.1672-9897.2011.06.005
    [14] 王万波,黄勇,黄宗波,等. 介质阻挡放电等离子体对NACA0015翼型流动控制的PIV实验研究[J]. 实验流体力学,2012,26(2):1-5. doi: 10.3969/j.issn.1672-9897.2012.02.001

    WANG W B,HUANG Y,HUANG Z B,et al. PIV measurement of dielectric barrier discharge plasma flow control on NACA0015 airfoil[J]. Journal of Experiments in Fluid Mechanics,2012,26(2):1-5. doi: 10.3969/j.issn.1672-9897.2012.02.001
    [15] BUSHNESS D M,HEFNER J N,ASHR L. Effect of compliant wall motion on turbulent boundary layers[J]. The Physics of Fluids,1977,20(10):31-48. doi: 10.1063/1.861756
    [16] 李彪辉,范子椰,刘丽霞,等. 柔性旋涡发生器对翼型前缘分离的自适应控制[J]. 气体物理,2020,5(5):56-62.

    LI B H,FAN Z Y,LIU L X,et al. Adaptive control of wing leading edge separation by flexible vortex generator[J]. Physics of Gases,2020,5(5):56-62.
    [17] 许影博,李晓东. 锯齿型翼型尾缘噪声控制实验研究[J]. 空气动力学学报,2012,30(1):120-124. doi: 10.3969/j.issn.0258-1825.2012.01.021

    XU Y B,LI X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica,2012,30(1):120-124. doi: 10.3969/j.issn.0258-1825.2012.01.021
    [18] MOREAU S, ROGER M, CHRISTOPHE J. Flow features and self-noise of airfoils near stall or in stall[R]. AIAA 2009-3189, 2009. doi: 10.2514/6.2009-3198
    [19] LARATRO A,ARJOMANDI M,CAZZOLATO B,et al. Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall[J]. International Journal of Aeroacoustics,2017,16(3):181-195. doi: 10.1177/1475472x17709929
    [20] 刘占生,马瑞贤,杨帆,等. 基于流固耦合作用的柔性体流噪声降噪机理研究[J]. 机械工程学报,2016,52(10):176-184. doi: 10.3901/JME.2016.10.176

    LIU Z S,MA R X,YANG F,et al. Study on noise reduction mechanism of flow induced noise for flexible body based on fluid-structure interaction[J]. Journal of Mechanical Engineering,2016,52(10):176-184. doi: 10.3901/JME.2016.10.176
    [21] 姜楠, 田砚, 唐湛棋. 工程中的流动测试技术及应用[M]. 天津: 天津大学出版社, 2018.

    JIANG N, TIAN Y, TANG Z Q. Flow measurement techniques and applications in engineering[M]. Tianjin: Tianjin University Press, 2018.
    [22] MATHIS R,HUTCHINS N,MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics,2009,628:311-337. doi: 10.1017/s0022112009006946
    [23] JIANG N,LIU W,LIU J H,et al. Phase-averaged waveforms of Reynolds stress in wall turbulence during the burst events of coherent structures[J]. Science in China Series G:Physics,Mechanics and Astronomy,2008,51(7):857-866. doi: 10.1007/s11433-008-0102-x
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  71
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 录用日期:  2021-06-28
  • 修回日期:  2021-06-13
  • 网络出版日期:  2022-01-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日