Key technology for mechanical design in large-scale cryogenic wind tunnel
-
摘要: 高雷诺数的模拟对飞行器的研制至关重要,是衡量风洞模拟能力的主要参数,低温风洞是工程上实现高雷诺数模拟的有效途径。作为低温风洞主体的洞体机械系统是其核心承载和功能设备,具有结构复杂、功能集成度高、可承受交变载荷等特点。通过分析国外低温风洞设计建设历程,结合国内低温风洞工程技术现状,对大型低温风洞洞体机械系统结构设计的关键技术进行分析,阐述洞体机械系统热应力及热变形控制、低温材料、宽温域重载传动机构、液氮喷射结构以及试验模型更换的核心指标、技术难点,并针对上述结构设计技术难点提出了攻关方向和后续研究建议。Abstract: The high range of the Reynolds number is a core requirement for the aircraft model testing in the wind tunnel, and the feasible engineering way for broadening it is reducing the total temperature of the fluid. Therefore the cryogenic wind tunnel is needed. The mechanical circuit system is the core function facility of the cryogenic wind tunnel with special characteristics as complex structure, high integrated functions, and cyclical loading bearer. By contrasting the design of the overseas the cryogenic wind tunnel and the domestic cryogenic technology, the key technologies for the cryogenic wind tunnel mechanical circuit system design are discussed in this article, such as cryogenic materials, thermal stress and deformation control, wide temperature range and heavy load transmission mechanism, liquid nitrogen spray valves and model transposing for cryogenic testing. The core indicators, technical difficulties and research approaches of each aforementioned key technology are expounded, respectively. Finally, some proposals are offered for the cryogenic wind tunnel mechanical design.
-
表 1 低温风洞用金属材料性能需求(部分)
Table 1. Expected properties of metal materials for cryogenic wind tunnel(partial)
需求类型 规定非比例延伸率为
1%时的应力/MPa规定非比例延伸率为
0.2%时的应力/MPa断后伸长率/% 硬度 77 K时的低温
冲击功/J可焊性 机械加工性 承压壳体(低强度钢) ≥230 ≥180 ≥40 200HB ≥34 优良 良好 中高强度钢 ≥560 ≥400 ≥30 32HRC ≥50 — 良好 高强度钢 ≥960 ≥800 ≥20 32HRC ≥50 — 良好 高疲劳寿命钢 ≥800 ≥560 ≥30 27HRC ≥50 — 良好 高耐磨钢 ≥560 ≥400 ≥30 40HRC ≥50 — 良好 表 2 洞体机械系统设计主要载荷
Table 2. Design load for mechanical system of the cave
重力加速度/g 最大压差/MPa 轴向力/kN 失稳压差/MPa 地震加速度/g 温度/K 1 0.45 1500 –0.1 0.1 90 -
[1] GOODYER M J. The cryogenic wind tunnel[J]. Progress in Aerospace Sciences,1992,29(3):193-220. doi: 10.1016/0376-0421(92)90008-6 [2] BRUCE W E, GLOS B B. The US national transonic facility, NTF[R]. AGARD-R-774, 1989. [3] GREEN J,QUEST J. A short history of the European transonic wind tunnel ETW[J]. Progress in Aerospace Sciences,2011,47(5):319-368. doi: 10.1016/j.paerosci.2011.06.002 [4] 宋远佳,陈振华,赖欢,等. 低温风洞绝热系统的研究现状及其关键技术[J]. 哈尔滨工业大学学报,2019,51(7):63-69. doi: 10.11918/j.issn.0367-6234.201801115SONG Y J,CHEN Z H,LAI H,et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology,2019,51(7):63-69. doi: 10.11918/j.issn.0367-6234.201801115 [5] 廖达雄,黄知龙,陈振华,等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学,2014,28(2):1-6,20. doi: 10.11729/syltlx20130102LIAO D X,HUANG Z L,CHEN Z H,et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):1-6,20. doi: 10.11729/syltlx20130102 [6] 赖欢,陈万华,孙德文,等. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学,2020,34(5):89-96. doi: 10.11729/syltlx20190156LAI H,CHEN W H,SUN D W,et al. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):89-96. doi: 10.11729/syltlx20190156 [7] 郭东明,雒建斌,方岱宁,等. 大型风洞设计建设中的关键科学问题[J]. 中国科学基金,2017,31(5):420-427. doi: 10.16262/j.cnki.1000-8217.2017.05.001GUO D M,LUO J B,FANG D N,et al. Key scientific issues on the design and construction of large wind tunnels: summary of the 185th NFSC Shuangqing Forum[J]. Bulletin of National Natural Science Foundation of China,2017,31(5):420-427. doi: 10.16262/j.cnki.1000-8217.2017.05.001 [8] KILGORE R. Evolution and development of cryogenic wind tunnels[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-457 [9] HARTZUIKER J. The European Transonic Windtunnel ETW-Design concepts and plans[C]//Proc of the 14th Aerodynamic Testing Conference. 1986. doi: 10.2514/6.1986-731 [10] 刘振宝,梁剑雄,苏杰,等. 高强度不锈钢的研究及发展现状[J]. 金属学报,2020,56(4):549-557. doi: 10.11900/0412.1961.2019.00453LIU Z B,LIANG J X,SU J,et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica,2020,56(4):549-557. doi: 10.11900/0412.1961.2019.00453 [11] 杨泽川,罗汝斌,廖鹤,等. 空间重复锁紧技术综述[J]. 航天返回与遥感,2019,40(4):10-21. doi: 10.3969/j.issn.1009-8518.2019.04.002YANG Z C,LUO R B,LIAO H,et al. Overview of reusable locking technology in space[J]. Spacecraft Recovery & Remote Sensing,2019,40(4):10-21. doi: 10.3969/j.issn.1009-8518.2019.04.002 [12] 孙德文,陈万华,祝长江,等. Nitronic 50不锈钢低温冲击韧性大幅降低原因分析[J]. 理化检验(物理分册),2017,53(10):750-753.SUN D W,CHEN W H,ZHU C J,et al. Cause analysis on significant decrease of impact toughness of nitronic 50 stainless steel at cryogenic temperature[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing),2017,53(10):750-753. [13] 张志秋,陈振华,聂旭涛,等. 基于流固热耦合低温风洞扩散段热力学特性分析[J]. 实验流体力学,2016,30(6):18-25. doi: 10.11729/syltlx20160100ZHANG Z Q,CHEN Z H,NIE X T,et al. Thermodynamic characteristic analysis of the cryogenic wind tunnel diffuser section based on fluid-thermal-structural coupling[J]. Journal of Experiments in Fluid Mechanics,2016,30(6):18-25. doi: 10.11729/syltlx20160100 [14] 麻越垠,聂旭涛,陈万华,等. 基于响应面法的低温风洞扩散段热力学模型修正[J]. 实验流体力学,2017,31(4):71-78. doi: 10.11729/syltlx20160133MA Y Y,NIE X T,CHEN W H,et al. Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method[J]. Journal of Experiments in Fluid Mechanics,2017,31(4):71-78. doi: 10.11729/syltlx20160133 [15] 王旭东,陈叔平,毛红威,等. 低温风洞电动推杆热防护结构设计及传热分析[J]. 低温工程,2017(6):63-69. doi: 10.3969/j.issn.1000-6516.2017.06.012WANG X D,CHEN S P,MAO H W,et al. Thermal protection structure design and heat transfer analysis of linear actuator in cryogenic wind tunnel[J]. Cryogenics,2017(6):63-69. doi: 10.3969/j.issn.1000-6516.2017.06.012 [16] 尉成果,陈万华,梁波,等. 低温/宽温域下自润滑关节轴承摩擦学性能研究[J]. 中国科学(技术科学),2020,50(6):775-785. doi: 10.1360/SST-2019-0398YU C G,CHEN W H,LIANG B,et al. Study on the tribological properties of a self-lubricating spherical plain bearing at a cryogenic and wide temperature range[J]. SCIENTIA SINICA Technologica,2020,50(6):775-785. doi: 10.1360/SST-2019-0398 [17] 郭旭,赵岩,王跃方. 大型风洞设计建设中的结构力学问题[J]. 中国科学基金,2017,31(5):432-436.GUO X,ZHAO Y,WANG Y F. Some key structural mechanics problem in design and construction of large wind tunnels[J]. Bulletin of National Natural Science Foundation of China,2017,31(5):432-436. -