留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性机翼刚度的静气弹敏感性研究

陈恺 刘晓燕 程攀 毛昆

陈恺,刘晓燕,程攀,等. 弹性机翼刚度的静气弹敏感性研究[J]. 实验流体力学,2022,36(6):54-60 doi: 10.11729/syltlx20210013
引用本文: 陈恺,刘晓燕,程攀,等. 弹性机翼刚度的静气弹敏感性研究[J]. 实验流体力学,2022,36(6):54-60 doi: 10.11729/syltlx20210013
CHEN K,LIU X Y,CHENG P,et al. Research on the static aero-elastic sensitivity of stiffness of flexible wing[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):54-60. doi: 10.11729/syltlx20210013
Citation: CHEN K,LIU X Y,CHENG P,et al. Research on the static aero-elastic sensitivity of stiffness of flexible wing[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):54-60. doi: 10.11729/syltlx20210013

弹性机翼刚度的静气弹敏感性研究

doi: 10.11729/syltlx20210013
详细信息
    作者简介:

    陈恺:(1995—),女,江苏泰兴人,硕士,工程师。研究方向:静气动弹性修正。通信地址:上海市浦东新区金科路5188号(201210)。Email:chenkai6@comac.cc

    通讯作者:

    Email:chenkai6@comac.cc

  • 中图分类号: V211.47

Research on the static aero-elastic sensitivity of stiffness of flexible wing

  • 摘要: 为保证大展弦比柔性机翼在巡航飞行时的气动性能够达到设计指标,需要在机翼气动外形设计阶段进行型架设计。机翼刚度对气动载荷有显著影响,是影响静气动弹性的重要因素之一。基于流固耦合方法开展变刚度型架外形设计鲁棒性分析研究,建立以机翼刚度为自变量的全机弹性气动导数评估模型,并以机翼扭转角及升力效率为约束,开展机翼刚度敏度分析。结果表明:垂直弯曲刚度、扭转刚度是影响机翼扭转角及全机升力效率的主要刚度特性;在机翼刚度变化不超过10%时可冻结型架外形;全机弹性气动导数与刚度比呈线性关系。研究结果可用于工程型号设计中的目标刚度静气动弹性评估。
  • 图  1  流体网格

    Figure  1.  Fluid grid

    图  2  结构模型

    Figure  2.  Structural model

    图  3  型架外形设计流程

    Figure  3.  Jig shape design process

    图  4  升力系数曲线

    Figure  4.  Lift coefficient curve

    图  5  俯仰力矩系数曲线

    Figure  5.  Pitch moment coefficient curve

    图  6  弹性机翼的扭转角差量

    Figure  6.  Delta twist angle of elastic wing along wing span

    图  7  弹性机翼的翼尖扭转角差量与刚度比的关系

    Figure  7.  Relationship between delta wing-tip twist angle and stiffness ratio

    图  8  压力分布对比

    Figure  8.  Comparison of pressure distribution

    图  9  升力系数曲线斜率与刚度比的关系

    Figure  9.  Relationship between slope of lift curve and stiffness

    图  10  俯仰力矩系数曲线斜率与刚度比的关系

    Figure  10.  Relationship between slope of pitching moment curve and stiffness

    图  11  刚度特性在扭转角约束中的分布

    Figure  11.  Distribution of stiffness characteristics under the constraint of twist angle

    图  12  刚度特性在升力效率约束中的分布

    Figure  12.  Distribution of stiffness characteristics under the constraint of lift efficiency

    图  13  垂直弯曲刚度对扭转角的设计敏度重要性

    Figure  13.  Design sensitivity importance of vertical bending stiffness to twist angle

    图  14  垂直弯曲刚度对升力效率的设计敏度重要性

    Figure  14.  Design sensitivity importance of vertical bending stiffness to lift efficiency

    图  15  扭转刚度对扭转角的设计敏度重要性

    Figure  15.  Design sensitivity importance of torsional stiffness to twist angle

    图  16  扭转刚度对升力效率的设计敏度重要性

    Figure  16.  Design sensitivity importance of torsional stiffness to lift efficiency

  • [1] TILMANN C P, FLICK P M, MARTIN C A, et al. High altitude long endurance technologies for sensor craft[C]// Proc of Novel Vehicle Concepts and Emerging Vehicle Technologies Symposium. 2003.
    [2] NGUYEN N, TRINH K, REYNOLDS K, et al. Elastically shaped wing optimization and aircraft concept for improved cruise efficiency[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine. 2013. doi: 10.2514/6.2013-141
    [3] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap: volume I mishap report[R]. VA 23681-2199, 2004.
    [4] BHATIA K, WERTHEIMER J. Aeroelastic challenges for a high speed civil transport[C]//Proc of the 34th Structures, Structural Dynamics and Materials Conference. 1993. doi: 10.2514/6.1993-1478
    [5] CORMAN J A, SAROJINI D, GHARBI A, et al. Estimating jig shape for an aircraft wing determined through aerodynamic shape optimization with rigid body assumptions[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0418
    [6] WAN Z Q,LIANG L,YANG C. Method of the jig shape design for a flexible wing[J]. Journal of Aircraft,2014,51(1):327-330. doi: 10.2514/1.C031926
    [7] ZINK P S,RAVEH D E,MAVRIS D N. Integrated trim and structural design process for active aeroelastic wing technology[J]. Journal of Aircraft,2003,40(3):523-531. doi: 10.2514/2.3126
    [8] BISPLINGHOF R L, ASHLEY H, HALFMAN T L. Aeroelasticity[M]. New York: John Wiley and Sons, Inc. , 1962.
    [9] SCHUSTER D M. An inverse method for computation of structural stiffness distributions of aeroelastically optimized wings[R]. AIAA-1993-1540, 1993. doi: 10.2514/6.1993-1540
    [10] 刘东岳,万志强,杨超,等. 大展弦比机翼总体刚度的气动弹性优化设计[J]. 航空学报,2011,32(6):1025-1031.

    LIU D Y,WAN Z Q,YANG C,et al. Aeroelastic optimization design of global stiffness for high aspect ratio wing[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1025-1031.
    [11] 张建刚,孙仁俊,金鑫. 大展弦比后掠机翼静气弹效应对气动载荷的影响实验与分析[J]. 应用力学学报,2017,34(3):570-575,616.

    ZHANG J G,SUN R J,JIN X. Test and study of static aeroelastic effects on wing's aerodynamic load[J]. Chinese Journal of Applied Mechanics,2017,34(3):570-575,616.
    [12] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]//Proc of the 14th Fluid and Plasma Dynamics Conference. 1981. doi: 10.2514/6.1981-1259
    [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8):1598-1605. doi: 10.2514/3.12149
    [14] HARDER R L,DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft,1972,9(2):189-191. doi: 10.2514/3.44330
    [15] BURG C. A robust unstructured grid movement strategy using three-dimensional torsional springs[C]//Proc of the 34th AIAA Fluid Dynamics Conference and Exhibition. 2004. doi: 10.2514/6.2004-2529
    [16] MAO K, XUE F, BAI F, et al. An engineering correction method of static aeroelasticity and Reynolds number effect on wind tunnel pressure distribution[M]//Singapore: Springer Singapore, 2019: 114-134. doi: 10.1007/978-981-13-3305-7_10
    [17] ADELMAN H M,HAFTKA R T. Sensitivity analysis of discrete systems[J]. Progress in Astronautics and Aeronautics,1993,150:291-291.
    [18] HAFTKA R T,ADELMAN H M. Recent developments in structural sensitivity analysis[J]. Structural Optimization,1989,1(3):137-151. doi: 10.1007/BF01637334
    [19] 万志强,杨超. 设计敏度在气动弹性遗传优化中的应用[J]. 北京航空航天大学学报,2006,32(5):508-512. doi: 10.3969/j.issn.1001-5965.2006.05.003

    WAN Z Q,YANG C. Application of design sensitivity in aeroelastic genetic optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2006,32(5):508-512. doi: 10.3969/j.issn.1001-5965.2006.05.003
  • 加载中
图(16)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  108
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-13
  • 录用日期:  2021-05-13
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日