留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种覆盖非线性段的风洞数据弹性修正方法

孙宇辰 程攀 俞金海

孙宇辰, 程攀, 俞金海. 一种覆盖非线性段的风洞数据弹性修正方法[J]. 实验流体力学, doi: 10.11729/syltlx20200140
引用本文: 孙宇辰, 程攀, 俞金海. 一种覆盖非线性段的风洞数据弹性修正方法[J]. 实验流体力学, doi: 10.11729/syltlx20200140
SUN Y C, CHENG P, YU J H. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20200140
Citation: SUN Y C, CHENG P, YU J H. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20200140

一种覆盖非线性段的风洞数据弹性修正方法

doi: 10.11729/syltlx20200140
详细信息
    作者简介:

    孙宇辰:(1996—),男,上海嘉定人,硕士研究生。研究方向:静气动弹性设计。通信地址:上海市浦东新区金科路5188号中国商飞上海飞机设计研究院(201210)。E-mail:sycalex@163.com

    通讯作者:

    E-mail:chengpan@comac.cc

  • 中图分类号: V211.47

Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests

  • 摘要: 介绍了一种在静气弹分析中引入CFD数据进行风洞数据非线性段弹性修正的方法。将多个迎角的CFD数据作为外部气动力引入NASTRAN静气弹分析,计算不同迎角(升力)区间内的气动导数并得到分段弹刚比,积分得到未变形模型的气动特性曲线。对大展弦比翼身组合体模型在不同动压和马赫数下的风洞试验结果进行弹性修正,结果表明:该方法显著提高了升力和力矩曲线非线性段的修正精度;在风洞试验的迎角范围内,与动压外插结果吻合,升力和力矩的最大误差不超过0.015和0.005;不同马赫数和动压下的修正结果表明该方法具有广泛的适用性,能够兼顾效率和精度,具有大规模应用的潜力。
  • 图  1  使用偶极子网格切割的CFD表面网格

    Figure  1.  CFD surface mesh cut by the DLM panels uncut CFD mesh and cut CFD mesh

    图  2  气动和结构分析模型

    Figure  2.  Analysis model: CFD mesh, DLM mesh and structure model

    图  3  计算模型与风洞测量变形结果对比

    Figure  3.  Comparison of displacement and rotation between NASTRAN model and wind tunnel measurement

    图  4  CFD、风洞试验及变动压外推结果

    Figure  4.  CFD, wind tunnel and extrapolated results

    图  5  Ma = 0.85工况下CL α修正结果和误差

    Figure  5.  Corrected CL α curve and deviation at Ma = 0.85

    图  6  Ma = 0.80工况下CL α曲线修正结果和误差

    Figure  6.  Corrected CL α curve and deviation at Ma = 0.80

    图  7  Ma = 0.85工况下的升力斜率弹刚比

    Figure  7.  C Flexible To Rigid Ratio at Ma = 0.85

    图  8  Ma = 0.85工况下Cm α曲线修正结果和误差

    Figure  8.  Corrected Cm α curve and deviation at Ma = 0.85

    图  9  Ma = 0.80工况下Cm α曲线修正结果和误差

    Figure  9.  Corrected Cm α curve and deviation at Ma = 0.80

    图  10  Ma = 0.85工况下的力矩曲线斜率弹刚比

    Figure  10.  dCm / dCL Flexible To Rigid Ratio at Ma = 0.85

    图  11  Ma = 0.85工况下的弹性修正一致性

    Figure  11.  Consistency of elastic correction at Ma = 0.85

    表  1  计算模型与风洞测量变形结果对比

    Table  1.   Comparison of displacement and rotation between NASTRAN model and wind tunnel measurement

    翼尖变形风洞测量计算模型误差
    位移/mm11.259210.48030.7789
    扭转角/(°)−0.9240−0.82550.0984
    下载: 导出CSV

    表  2  Ma = 0.85工况下CL α曲线修正误差

    Table  2.   Deviation of corrected CL α curve at Ma = 0.85

    q/E =
    0.38 × 10−6
    Ave. ΔCLAdvantageMax ΔCLAdvantage
    Fixed KCL0.00750.0245
    Piecewise KCL0.0055−26.7%0.0137−44.2%
    下载: 导出CSV

    表  3  Ma = 0.80工况下CL α曲线修正误差

    Table  3.   Deviation of corrected CLα curve at Ma=0.80

    q/E =
    0.36 × 10−6
    Ave. ΔCLAdvantageMax ΔCLAdvantage
    Fixed KCL0.00470.0153
    Piecewise KCL0.0043−8.9%0.0108−29.7%
    下载: 导出CSV

    表  4  Ma = 0.85工况下Cm α曲线修正误差

    Table  4.   Deviation of corrected Cm α curve at Ma = 0.85

    q/E =
    0.38 × 10−6
    Ave. ΔCmAdvantageMax ΔCmAdvantage
    Fixed KCm0.00300.0174
    Piecewise KCm0.0014−53.7%0.0043−75.5%
    下载: 导出CSV

    表  5  Ma=0.80工况下Cmα曲线修正误差

    Table  5.   Deviation of corrected Cmα curve at Ma=0.80

    q/E =
    0.38 × 10−6
    Ave. ΔCmAdvantageMax ΔCmAdvantage
    Fixed KCm0.00210.0061
    Piecewise KCm0.0018−12.0%0.0050−18.1%
    下载: 导出CSV

    表  6  Ma = 0.85工况下的弹性修正一致性

    Table  6.   Consistency of elastic correction at Ma = 0.85

    Ave. ΔCLMax ΔCLAve. ΔCmMax ΔCm
    Discrepancy0.00300.00780.00080.0024
    下载: 导出CSV

    表  7  计算步骤表

    Table  7.   Main procedure of correction

    编号计算步骤计算资源每个算例
    耗时
    1 CFD计算,迎角0°、2°、3°、4°、5°,
    多重网格计算5000步
    16核CPU工作站4 h
    2CFD数据映射至气动面元移动工作站5 min
    3生成各迎角(升力)区间修正矩阵移动工作站5 min
    4NASTRAN静气弹分析移动工作站5 min
    下载: 导出CSV
  • [1] KEYE S, RUDNIK R. Aero-elastic simulation of DLR’s F6 transport aircraft configuration and comparison to experimental data[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 580. doi: 10.2514/6.2009-580
    [2] 刘大伟, 熊贵天, 刘洋, 等. 宽体客机高速风洞试验数据修正方法[J]. 航空学报, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205

    LIU D W, XIONG G T, LIU Y, et al. Method of test data correction for wide-body aircraft in high speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205
    [3] BENEDICT K A, HEDGES L, ROBINSON A, et al. Inclusion of aeroelastic twist into the CFD analysis of the twin-engine NASA common research model[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0251. doi: 10.2514/6.2014-0251
    [4] KEYE S, BRODERSEN O, RIVERS M B. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4): 1323–1330. doi: 10.2514/1.C032598
    [5] RIVERS M, HUNTER C, CAMPBELL R. Further investigation of the support system effects and wing twist on the NASA common research model[C]//Proc of the 30th AIAA Applied Aerodynamics Conference. 2012: 3209. doi: 10.2514/6.2012-3209
    [6] YASUE K, SAWADA K. CFD-aided evaluation of Reynolds number scaling effect accounting for static model deformation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(5): 321–331. doi: 10.2322/tjsass.55.321
    [7] BALLMANN J. Experimental Analysis of high Reynolds Number structural Dynamics in ETW[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibition. 2008: 841. doi: 10.2514/6.2008-841
    [8] BIANCOLINI M E, CELLA U, GROTH C, et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating[J]. Journal of Aerospace Engineering, 2016, 29(6): 04016061. doi: 10.1061/(asce)as.1943-5525.0000627
    [9] CELLA U, BIANCOLINI M E. Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes[J]. Journal of Aircraft, 2012, 49(2): 407–414. doi: 10.2514/1.C031293
    [10] VRCHOTA P, PRACHAŘ A. Using wing model deformation for improvement of CFD results of ESWIRP project[J]. CEAS Aeronautical Journal, 2018, 9(2): 361–372. doi: 10.1007/s13272-018-0286-3
    [11] 王艺坤, 史爱明. 机翼风洞试验模型CFD静气动弹性修正研究[J]. 科学技术与工程, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032

    WANG Y K, SHI A. Static aeroelastic correction for wind tunnel results of wing model with CFD[J]. Science Technology and Engineering, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032
    [12] 夏生林, 赵利霞, 唐克兵, 等. CFD技术在静气动弹性修正计算中的研究与应用[C]// 第十一届全国空气弹性学术交流会会议论文集. 2009: 310-315.

    XIA S L, ZHAO L X, TANG K B, et al. The investigation and application of the technique of CFD simulation to static aeroelasticity correction[C]//Proc of the 11th Academic Conference of Aeroelasticity. 2009: 310-315.
    [13] LIU D W, XU X, LI Q, et al. Ispravak učinaka deformacije modela za superkritično krilo u transoničkom vjetrenom tunelu[J]. Tehnicki Vjesnik, 2017, 24(6): 1647–1655. doi: 10.17559/tv-20160525142932
    [14] 孙岩, 张征宇, 邓小刚, 等. 风洞模型静弹性变形对气动力影响研究[J]. 空气动力学学报, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013

    SUN Y, ZHANG Z Y, DENG X G, et al. Static aeroelastic effects of wind tunnel model on aerodynamic forces[J]. Acta Aerodynamica Sinica, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013
    [15] SUN Y, WANG Y T, RONCH A, et al. A fast correction method of model deformation effects in wind tunnel tests[J]. Aerospace, 2018, 5(4): 125. doi: 10.3390/aerospace5040125
    [16] GIBSON T. Investigation of wind tunnel model deformation under high Reynolds number aerodynamic loading[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibition. 2002: 424. doi: 10.2514/6.2002-424
    [17] 赵卓林, 张家齐, 徐港, 等. 一种基于CFD的增压风洞试验数据刚体修正方法[J]. 飞机设计, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007

    ZHAO Z L, ZHANG J Q, XU G, et al. A correction study on pressurized wind tunnel results based on CFD[J]. Aircraft Design, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007
    [18] GIESING J P, KALMAN T P, RODDEN W P. Correction factory techniques for improving aerodynamic prediction methods[R]. NASA-CR-144967, 1976.
    [19] WIESEMAN C D. Methodology for matching experimental and computational aerodynamic data[R]. NASA-TM-100592, 1988.
    [20] 严德, 杨超, 万志强. 应用气动力修正技术的静气动弹性发散计算[J]. 北京航空航天大学学报, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004

    YAN D, YANG C, WAN Z Q. Static Aeroelastic divergence analysis by introducing correction techniques of aerodynamic data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004
    [21] MORENO R, NARISETTI R, VON KNOBLAUCH F, et al. A modification to the enhanced correction factor technique to correlate with experimental data[C]//Proc of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015: 1421. doi: 10.2514/6.2015-1421
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  50
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2020-11-28
  • 录用日期:  2020-12-04
  • 网络出版日期:  2023-10-18

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日