Research on icing wind tunnel test technology of helicopter rotor model
-
摘要: 为满足我国直升机旋翼结冰风洞试验需求,中国空气动力研究与发展中心在大型多功能结冰风洞研制了直升机旋翼模型结冰试验系统,发展了旋翼模型结冰风洞试验方法和数据采集与处理方法,规范了结冰试验的流程,能够安全可靠地开展旋翼模型结冰试验研究。通过开展国内首次直升机旋翼模型结冰风洞试验,研究了典型工况下旋翼模型的结冰特性,获得了结冰过程中旋翼模型气动载荷和振动载荷变化特性。试验结果表明:随着结冰时间增加,旋翼拉力急剧下降,功率急剧增大;伴随着桨叶表面“冰脱落—生成—再脱落—再生成”过程,旋翼性能出现较大波动;旋翼桨叶表面出现冰脱落之前,试验数据重复性良好可靠。Abstract: In order to meet the needs of the wind tunnel test of helicopter rotor icing in China, China Aerodynamics Research and Development Center has developed a rotor model icing test technology. A helicopter rotor model icing test system was developed in a large multi-function icing wind tunnel. The test method and data acquisition and processing method of the rotor model in the icing wind tunnel were developed. The process of the rotor model icing test was standardized, and thus the research of the rotor model icing test could be carried out safely and reliably. Through the first icing wind tunnel test of the helicopter rotor model in China, the icing characteristics of the rotor model under typical working conditions were studied, and the variation characteristics of aerodynamic load and vibration load of the rotor model during the icing process were obtained. The test results show that: with the increase of icing time, the rotor thrust decreases sharply, and the power increases sharply. With the ice shedding, growth, re-shedding and regrowth on the blade surface, the rotor performance fluctuates greatly. Before the ice shedding on the surface of the rotor blade, the test data have good repeatability and reliability.
-
Key words:
- helicopter /
- rotor model /
- icing wind tunnel /
- test technology
-
表 1 典型试验状态
Table 1. Typical test state
参数 数值 旋翼转速/(r·min–1) 1800 前进比 0.2 主轴倾角/(°) –5 风洞静温/℃ –15 液态水含量/(g·m–3) 0.70 平均水滴直径/μm 20 结冰时间/s 180 -
[1] 王适存. 直升机空气动力学[M]. 北京: 航空专业教材编审组, 1985. [2] CAO Y,CHEN K. Helicopter icing[J]. The Aeronautical Journal,2010,114(1152):83-90. doi: 10.1017/s0001924000003559 [3] 徐玉貌,吕少杰,曹义华,等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报,2016,31(2):399-404. doi: 10.13224/j.cnki.jasp.2016.02.019XU Y M,LU S J,CAO Y H,et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power,2016,31(2):399-404. doi: 10.13224/j.cnki.jasp.2016.02.019 [4] 曹普孙,张威,胡偶. 基于CCAR-29附录C的旋翼结冰特性研究[J]. 直升机技术,2019(3):1-4, 9. doi: 10.3969/j.issn.1673-1220.2019.03.001CAO P S,ZHANG W,HU O. Research for rotor icing property based on CCAR-29 Appendix C[J]. Helicopter Technique,2019(3):1-4, 9. doi: 10.3969/j.issn.1673-1220.2019.03.001 [5] 李国知,曹义华. 旋翼结冰对直升机飞行动力学特性的影响[J]. 航空学报,2011,32(2):187-194.LI G Z,CAO Y H. Effect of rotor icing on helicopter flight dynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica,2011,32(2):187-194. [6] FLEMMING R J. The past twenty years of icing research and development at Sikorsky Aircraft[R]. AIAA-2002-0238, 2002. doi: 10.2514/6.2002-238 [7] BARUZZI G, TRAN P, HABASHI W G, et al. FENSAP-ICE: Progress towards a rotorcraft full-3D icing simulation system[R]. AIAA 2003-0024, 2003. doi: 10.2514/6.2003-24 [8] BRITTON R K. An overview of a model rotor icing test in the NASA Lewis icing research tunnel[R]. AIAA-94-0716, 1994. doi: 10.2514/6.1994-716 [9] FLEMMING R J, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory[R]. AIAA 2004-734, 2004. doi: 10.2514/6.2004-737 [10] FLEMMING R J, BOND T, BRITTON R. Results of a sub-scale model rotor icing test[R]. AIAA-91-0660, 1991. doi: 10.2514/6.1991-660 [11] BRITTON R K. Development of an analytical method to predict helicopter main rotor performance in icing conditions[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-418 [12] BRITTON R K, BOND T H. A review of ice accretion data from a model rotor icing test and comparison with theory[R]. AIAA-91-0661, 1991. doi: 10.2514/6.1991-661 [13] HARTMAN P, NARDUCCI R, PETERSON A, et al. Prediction of ice accumulation and airfoil performance degradation: A Boeing-CIRA research collaboration[C]//Proc of the AHS International 62nd Annual Forum. 2006. [14] GUFFOND D P. Icing and deicing test on a 1/4 scale rotor in ONERA SIMA wind tunnel[C]//Proc of the 24th Aerospace Sciences Meeting. 1986. doi: 10.2514/6.1986-480 [15] 战培国. 结冰风洞研究综述[J]. 实验流体力学,2007,21(3):92-96. doi: 10.3969/j.issn.1672-9897.2007.03.019ZHAN P G. A review of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2007,21(3):92-96. doi: 10.3969/j.issn.1672-9897.2007.03.019 [16] 王宗衍. 冰风洞与结冰动力学[J]. 制冷学报,1999,20(4):15-17.WANG Z Y. Icing wind tunnel and icing aerodynamics[J]. Refrigeration Journal,1999,20(4):15-17. [17] 田永强,蔡晋生,张正科,等. 结冰风洞实验中的相似理论[J]. 北京航空航天大学学报,2020,46(2):359-370. doi: 10.13700/j.bh.1001-5965.2019.0340TIAN Y Q,CAI J S,ZHANG Z K,et al. Similarity theory in icing wind tunnel test[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(2):359-370. doi: 10.13700/j.bh.1001-5965.2019.0340 [18] 黄明其. 直升机风洞试验[M]. 北京: 国防工业出版社, 2014: 81. [19] 倪章松,刘森云,王桥,等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学,2019,33(6):46-53. doi: 10.11729/syltlx20180115NI Z S,LIU S Y,WANG Q,et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(6):46-53. doi: 10.11729/syltlx20180115 [20] 中国空气动力研究与发展中心低速空气动力研究所. 一种直升机旋翼模型结冰风洞试验方法: CN202010486809.5 [P]. 2020-05-31. [21] 刘伟光,高保方,张功虎,等. 直升机结冰强度设计标准研究[J]. 直升机技术,2011(2):30-33. doi: 10.3969/j.issn.1673-1220.2011.02.005LIU W G,GAO B F,ZHANG G H,et al. Research of icing severity standards for helicopter[J]. Helicopter Technique,2011(2):30-33. doi: 10.3969/j.issn.1673-1220.2011.02.005 [22] FLEMMING R J, HANKS K W, HANKS M L. US army UH-60M helicopter main rotor ice protection system[R]. SAE Technical Paper 2007-01-3301, 2007. doi: 10.4271/2007-01-3301 [23] FLEMMING R J, ALLDRIDGE P J. Sikorsky S-92A® and S-76D™ helicopter rotor ice protection systems[R]. SAE Technical Paper 2007-01-3299, 2007. doi: 10.4271/2007-01-3299 [24] FLEMMING R J. A history of ice protection system development at Sikorsky aircraft[R]. SAE Technical Paper 2003-01-2092, 2003. doi: 10.4271/2003-01-2092 [25] BELL J D. Icing at the McKinley climatic laboratory[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-695 [26] SHAW R J, RICHTER G P. The UH-1H helicopter icing flight test program - an overview[C]//Proc of the 23rd Aerospace Sciences Meeting. 1985. doi: 10.2514/6.1985-338 [27] CHEN X,ZHAO Q J,BARAKOS G. Numerical analysis of aerodynamic characteristics of iced rotor in forward flight[J]. AIAA Journal,2018,57(4):1523-1537. doi: 10.2514/1.J057399 [28] FLEMMING R. The past twenty years of icing research and development at Sikorsky Aircraft[R]. AIAA-2002-0238, 2002. doi: 10.2514/6.2002-238 [29] NARDUCCI R, KREEGER R E. Analysis of a Hovering Rotor in icing conditions[C]//Proc of the American Helicopter Society 66th Annual Forum. 2010. [30] BROUWERS E W, PALACIOS J L, HAN Y, et al. Ice adhesion strength measurements for rotor blade leading edge materials[C]//Proc of the American Helicopter Society 67th Annual Forum. 2011. -