Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel
-
摘要: 结冰风洞热流场品质符合性是大型结冰风洞适航应用的基础。为明晰制冷系统性能升级优化对3 m×2 m结冰风洞热流场品质的影响,开展了热流场符合性验证试验,评估了热交换器出口和试验段两位置处热流场品质,给出了气流总温修正关系,形成了热流场控制包线。结果表明:热交换器出口和试验段模型区内热流场品质在主要试验工况下均优于SAE ARP5905指标;与升级优化前(2019年)试验结果对比,优化后试验段模型区内热流场空间均匀性显著增强,尤其在高风速、低总温工况下,模型区内均未出现超标的非均匀峰值点。结冰风洞制冷系统的升级优化显著扩展了3 m×2 m结冰风洞主试验段热流场控制包线,增强了结冰风洞试验模拟能力。Abstract: The compliance of the thermal flow field quality of the large icing wind tunnel is the foundation of its airworthiness application. In order to understand the effects of upgrading of the refrigeration system on the thermal flow field quality in the CARDC icing wind tunnel, a comprehensive verification test is carried out for the main test section. Then, the thermal flow field qualities, both at the exit of the heat exchanger and in the test section, are evaluated. Finally, the correction relationship of the airflow total temperature and the thermal flow field operating envelop are achieved. Results show that the thermal flow field qualities, both at the exit of the heat exchanger and in the test section, are better than the quality index given in SAE ARP5905, under the main test conditions. Compared with the test results in 2019, the spatial uniformity in the model area of the test section is greatly enhanced. Particularly, non-uniform temperature peak points exceeding the standard in the model area are eliminated under the conditions of high airspeed and low total temperature. Finally, the upgrading of the refrigeration system in 2020 greatly extends the thermal flow field operating envelop, so that the temperature simulation capability of the CARDC icing wind tunnel is enhanced significantly.
-
表 1 试验段尺寸参数和模拟气流速度范围
Table 1. The test section size parameters and simulation airspeed range
Test section Dimension Airspeed/
(m·s–1)Height/m Width/m Length/m Main 2.0 3.0 6.5 21~210 Secondary 3.2 4.8 9.0 8~78 High speed 1.5 2.0 4.5 26~256 Items Static air temperature Ts < –30 ℃ –30 ℃ < Ts < 5 ℃ Measurement instrumentation
maximum uncertainty±2.0 ℃ ±0.5 ℃ Spatial uniformity ±2.0 ℃ ±1.0 ℃ Temporal stability ±2.0 ℃ ±0.5 ℃ 表 3 气流总温试验工况
Table 3. Test conditions of airflow total temperature
Parameter Value Tt /℃ –30, –25, –20, –15, –10, –5, 0, 5 vTS /(m·s–1) 40, 60, 80, 100, 120, 140 -
[1] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016. [2] KING-STEEN L E, IDE R F, Van ZANTE J F, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015. [3] ESPOSITO B M, RAGNI A, FERRIGNO F, et al. Cloud calibration update of the CIRA icing wind tunnel[R]. SAE Technical Paper Series 2003-01-2312, 2003. doi: 10.4271/2003-01-2132 [4] 郭向东,张平涛,赵献礼,等. 大型结冰风洞热流场符合性验证[J]. 实验流体力学,2020,34(5):79-88. doi: 10.11729/syltlx20190113GUO X D,ZHANG P T,ZHAO X L,et al. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):79-88. doi: 10.11729/syltlx20190113 [5] IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn icing research tunnel[R]. AIAA-2001-0229, 2001. doi: 10.2514/6.2001-229 [6] GONSALEZ J, ARRINGTON E, III M C. Quality surveys of the NASA Glenn icing research tunnel(2000 tests)[R]. AIAA-2001-0232, 2001. doi: 10.2514/6.2001-232 [7] GONSALEZ J, ARRINGTON E, CURRY M. Thermal calibration of the NASA Glenn icing research tunnel (2000 tests)[R]. AIAA-2001-0233, 2001. doi: 10.2514/6.2001-233 [8] ARRINGTON E, GONSALEZ J. Improvements to the total temperature calibration of the NASA Glenn icing research tunnel[R]. AIAA 2005-4276, 2005. doi: 10.2514/6.2005-4276 [9] OLDENBURG J, IDE R, DEL ROSO R, et al. Improvements to the NASA Glenn icing research tunnel's air temperature measurement system[R]. AIAA 2006-1222, 2006. doi: 10.2514/6.2006-1222 [10] PASTOR-BARSI C, ARRINGTON A. Aero-thermal calibration of the NASA Glenn icing research tunnel (2012 test)[R]. AIAA 2012-2934, 2012. doi: 10.2514/6.2012-2934 [11] STEEN L C, Van ZANTE J, BROEREN A, et al. Flow quality surveys in the settling chamber of the NASA Glenn icing research tunnel (2011 tests)[R]. AIAA 2012-2935, 2012. doi: 10.2514/6.2012-2935 [12] CHINTAMANI S, BELTER D. Design features and flow qualities of the Boeing research aerodynamic icing tunnel[R]. AIAA 95-0540, 1994. doi: 10.2514/6.1994-540 [13] IRANI E, AL-KHALIL K. Calibration and recent upgrades to the cox icing wind tunnel[R]. AIAA 2008-437, 2008. doi: 10.2514/6.2008-437 [14] 郭向东,张平涛,赵照,等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报,2020,41(10):123879.GUO X D,ZHANG P T,ZHAO Z,et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):123879. [15] 郭向东,柳庆林,赖庆仁,等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报,2021,39(2):184-195. doi: 10.7638/kqdlxxb-2019.0086GUO X D,LIU Q L,LAI Q R,et al. Airworthiness compliance verification of aerodynamic flowfield of a large-scale icing wind tunnel[J]. Acta Aerodynamica Sinica,2021,39(2):184-195. doi: 10.7638/kqdlxxb-2019.0086 [16] AC-9C Aircraft Icing Technology Committee. SAE ARP 5905-2003, Calibration and acceptance of icing wind tunnels[S]. Warrendale, PA: SAE International, 2003. -