留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴流涡轮叶尖泄漏流动实验测量技术研究进展

杨益 马宏伟

杨 益,马宏伟. 轴流涡轮叶尖泄漏流动实验测量技术研究进展[J]. 实验流体力学,2021,35(6):1-16 doi: 10.11729/syltlx20200107
引用本文: 杨 益,马宏伟. 轴流涡轮叶尖泄漏流动实验测量技术研究进展[J]. 实验流体力学,2021,35(6):1-16 doi: 10.11729/syltlx20200107
YANG Y,MA H W. Progress of experimental research on axial turbine tip leakage flow[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-16. doi: 10.11729/syltlx20200107
Citation: YANG Y,MA H W. Progress of experimental research on axial turbine tip leakage flow[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):1-16. doi: 10.11729/syltlx20200107

轴流涡轮叶尖泄漏流动实验测量技术研究进展

doi: 10.11729/syltlx20200107
基金项目: 国家自然科学基金(51776011);国家科技重大专项(2017-V-0016-0068);国防科技重点实验室基金(6142702020218)
详细信息
    作者简介:

    杨益:(1993-),男,山东烟台人,博士研究生。研究方向:涡轮叶尖非定常流动及控制机理研究。通信地址:北京市昌平区高教园南三街9号北京航空航天大学能源与动力工程学院流体机械系(100191)。E-mail:yangyee93@163.com

    通讯作者:

    E-mail:mahw@buaa.edu.cn

Progress of experimental research on axial turbine tip leakage flow

  • 摘要: 基于公开文献与课题组现有实验研究成果,总结轴流涡轮叶尖泄漏流动实验测量的研究现状,并对未来发展方向进行展望。实验装置方面,现有大多数实验研究基于涡轮平面叶栅,针对旋转状态下间隙泄漏流动的测量较少;测量工况方面,低速条件下的实验研究较多,针对跨声速、超声速叶尖泄漏流动的研究较少;测量方法方面,多数实验为稳态定量和定性测量,且着眼于出口流场,针对涡轮转子叶尖间隙内部流动结构的非接触、瞬态测量研究较少;结果分析方面,多数实验着眼于分析泄漏流动对涡轮性能的影响,对泄漏涡非定常流动机理、泄漏涡与二次涡系的相互作用以及涡破碎的揭示尚不完全。基于涡轮转子实验台,结合端壁动态压力测量阵列,采用内窥式PIV、LDV技术对涡轮转子叶尖间隙内部及附近非定常泄漏流动的测量是一个亟待深入研究的重要方向。
  • 图  1  五孔探针测量方案布局[30]

    Figure  1.  Measurement layout of five-hole probe[30]

    图  2  总压损失系数云图[30]

    Figure  2.  Contour of total pressure loss coefficient[30]

    图  3  可移动端壁平面叶栅实验装置[36]

    Figure  3.  Cascade test section and moving belt[36]

    图  4  叶栅出口轴向涡量对比[32]

    Figure  4.  Comparison of axial vorticity contours at cascade exit[32]

    图  5  亚声速和跨声速叶顶流动结构示意[37]

    Figure  5.  Schematics of subsonic and transonic tip flow structure[37]

    图  6  三孔跨音压力探针[41]

    Figure  6.  Three-hole transonic pressure probe[41]

    图  7  实验用三孔探针[43]

    Figure  7.  Schematic diagram of three-hole probe for experiment[43]

    图  8  实验测得的叶栅下游不同间隙高度总压损失分布[43]

    Figure  8.  Experimentally-determined cascade downstream total pressure loss distribution with different tip clearance heights[43]

    图  9  聚焦纹影系统示意图[44]

    Figure  9.  Schematic of the focusing schlieren system[44]

    图  10  不同压比下的叶顶间隙内部纹影图[28]

    Figure  10.  Schlieren images at various tip pressure ratios within tip gap[28]

    图  11  不同时刻非定常流动图画[46]

    Figure  11.  Unsteady flow field at different times[46]

    图  12  氢气泡流场显示方案[30]

    Figure  12.  Flow field visualization scheme by hydrogen bubble[30]

    图  13  氢气泡显示的不同中弧线截面的尖区泄漏流动[30]

    Figure  13.  Leakage flow in the tip area at different cross-sections shown by hydrogen bubbles[30]

    图  14  不同截面处的流动参数分布[30]

    Figure  14.  Flow parameters distribution at different sections[30]

    图  15  SPIV测量整体方案布局[51]

    Figure  15.  Configuration of SPIV measurements[51]

    图  16  SPIV测量截面[51]

    Figure  16.  Measurement plane of SPIV[51]

    图  17  在不同弦长截面获得的涡量和流向速度分布[51]

    Figure  17.  Vorticity and streamwise velocity distribution at different test sections[51]

    图  18  涡轮叶顶间隙内流场PIV测量方案[36]

    Figure  18.  PIV measurement section of turbine blade tip clearance[36]

    图  19  间隙内部PIV测量结果[36]

    Figure  19.  PIV measurement results inside the gap[36]

    图  20  涡轮凹槽叶顶内窥PIV测量方案[52]

    Figure  20.  Endoscope PIV layout scheme of squealer tip[52]

    图  21  凹槽内部不同流向位置旋涡及涡量分布[52]

    Figure  21.  Vortex and vorticity distribution at different streamwise locations inside the cavity[52]

    图  22  大尺寸涡轮实验装置[53]

    Figure  22.  Large scale turbine test rig[53]

    图  23  涡轮转子通道内的湍流强度分布[55]

    Figure  23.  Turbulence intensity distribution in turbine rotor passage[55]

    图  24  动态总压探针结构图[56]

    Figure  24.  Diagram of dynamic total pressure probe[56]

    图  25  转子出口测量布局[56]

    Figure  25.  Measurement arrangement at the rotor exit[56]

    图  26  转子出口总压系数分布[59]

    Figure  26.  Distribution of total pressure coefficient at rotor outlet[59]

    图  27  表面油流显示[62]

    Figure  27.  Surface flow patterns by oil flow visualization[62]

    图  28  动态测量系统组成[64]

    Figure  28.  Composition of dynamic measurement system[64]

    图  29  不同间隙高度下的转子出口马赫数分布[64]

    Figure  29.  Distribution of Mach number at rotor outlet with different tip clearance heights[64]

    图  30  涡轮转子叶尖泄漏流动SPIV测量布置方案[66]

    Figure  30.  SPIV arrangement for turbine rotor tip leakage flow[66]

    图  31  涡轮转子内窥式PIV光路布置[66]

    Figure  31.  PIV optical path arrangement inside turbine rotor[66]

    图  32  转子通道内径向截面上测得的速度与进口速度的比值分布[66]

    Figure  32.  In plane velocity relative to inflow derived from BPIV, rotor passage[66]

    图  33  SPIV在叶尖切向-轴向平面上测得的径向速度与进口速度的比值[66]

    Figure  33.  Radial velocity relative to inflow velocity from stereo-PIV data at tangential-axial plane[66]

    图  34  FM-DGV几何安装示意[65]

    Figure  34.  Geometrical arrangement of the FM-DGV[65]

    图  35  实验装置示意(侧视图)[65]

    Figure  35.  Sketches of the measurement setup at the turbine rig (side view)[65]

    图  36  激光多普勒实验布置方案[65]

    Figure  36.  LDV apparatus for tip leakage flow measurement[65]

    图  37  实验测得的速度分布[65]

    Figure  37.  Measured velocity distribution[65]

  • [1] PEACOCK R E. A review of turbomachinery tip gap effects: Part 1: Cascades[J]. International Journal of Heat and Fluid Flow,1982,3(4):185-193. doi: 10.1016/0142-727X(82)90017-0
    [2] PEACOCK R E. A review of turbomachinery tip gap effects: Part 2: Rotating machinery[J]. International Journal of Heat and Fluid Flow,1983,4(1):3-16. doi: 10.1016/0142-727X(83)90019-X
    [3] HOURMOUZIADIS J, ALBRECHT G. An integrated aero/mechanical performance approach to high technology turbine design[R]. Motoren-Und Turbinen-Union Gmbh Munich (Germany Fr), 1987.
    [4] DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4):621-656. doi: 10.1115/1.2929299
    [5] SJOLANDER S A,AMRUD K K. Effects of tip clearance on blade loading in a planar cascade of turbine blades[J]. Journal of Turbo-machinery,1987,109(2):237-244. doi: 10.1115/1.3262090
    [6] YAMAMOTO A. Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery,1989,111(3):264-275. doi: 10.1115/1.3262265
    [7] BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery,1989,111(3):257-263. doi: 10.1115/1.3262264
    [8] MOORE J,TILTON J S. Tip leakage flow in a linear turbine cascade[J]. Journal of Turbomachinery,1988,110(1):18-26. doi: 10.1115/1.3262162
    [9] SJOLANDER S A,CAO D. Measurements of the flow in an idealized turbine tip gap[J]. Journal of Turbomachinery,1995,117(4):578-584. doi: 10.1115/1.2836571
    [10] HEYES F J G,HODSON H P,DAILEY G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery,1992,114(3):643-651. doi: 10.1115/1.2929188
    [11] ZHOU C,HODSON H. Squealer geometry effects on aerothermal performance of tip-leakage flow of cavity tips[J]. Journal of Propulsion and Power,2012,28(3):556-567. doi: 10.2514/1.B34254
    [12] LEE S W,KIM S U. Tip gap height effects on the aerodynamic performance of a cavity squealer tip in a turbine cascade in comparison with plane tip results: part 1—tip gap flow structure[J]. Experiments in Fluids,2010,49(5):1039-1051. doi: 10.1007/s00348-010-0848-6
    [13] KEY N L,ARTS T. Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions[J]. Journal of Turbomachinery,2006,128(2):213-220. doi: 10.1115/1.2162183
    [14] HOFER T, ARTS T. Aerodynamic investigation of the tip leakage flow for blades with different tip squealer geometries at transonic conditions[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010: 1051-1061. doi: 10.1115/GT2009-59909.
    [15] GOLDSTEIN R J,JIN P,PAPA M,et al. Flow visualisation and heat/mass transfer in a linear turbine cascade with tip clearance[J]. Australian Journal of Mechanical Engineering,2007,4(1):65-76. doi: 10.1080/14484846.2007.11464515
    [16] DOUVILLE T, STEPHENS J, CORKE T, et al. Turbine blade tip leakage flow control by partial squealer tip and plasma actuators[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-20.
    [17] SEO Y C,LEE S W. Tip gap flow and aerodynamic loss generation in a turbine cascade equipped with suction-side winglets[J]. Journal of Mechanical Science and Technology,2013,27(3):703-712. doi: 10.1007/s12206-012-1258-x
    [18] CHEON J H,LEE S W. Winglet geometry effects on tip leakage loss over the plane tip in a turbine cascade[J]. Journal of Mechanical Science and Technology,2018,32(4):1633-1642. doi: 10.1007/s12206-018-0318-2
    [19] JIANG S,YU J Y,WANG H W,et al. Experimental investigation of the bending clearance on the aerodynamic performance in turbine blade tip region[J]. Energy,2020,197:117234. doi: 10.1016/j.energy.2020.117234
    [20] ROY B, PRAJAPATI A. Part-span application of sweep and lean at turbine blade tips: a low speed experimental cascade study[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 1469-1478. doi: 10.1115/GT2010-22971.
    [21] FU Y F,CHEN F,LIU H P,et al. Experimental and numerical study of honeycomb tip on suppressing tip leakage flow in turbine cascade[J]. Journal of Turbomachinery,2018,140(6):061006. doi: 10.1115/1.4039049
    [22] ZHANG M,LIU Y,ZHANG T L,et al. Aerodynamic optimization of a winglet-shroud tip geometry for a linear turbine cascade[J]. Journal of Turbomachinery,2017,139(10):101011. doi: 10.1115/1.4036647
    [23] LIU Y,ZHANG M,ZHANG T L,et al. Effect of winglet-shroud tip with labyrinth seals on aerodynamic performance of a linear turbine cascade[J]. Journal of Fluids Engineering,2016,138(7):071103. doi: 10.1115/1.4032752
    [24] ZHOU C,HODSON H,TIBBOTT I,et al. Effects of winglet geometry on the aerodynamic performance of tip leakage flow in a turbine cascade[J]. Journal of Turbomachinery,2013,135(5):051009. doi: 10.1115/1.4007831
    [25] ZHOU Z H,CHEN S W,LI W H,et al. Experiment study of aerodynamic performance for the suction-side and pressure-side winglet-cavity tips in a turbine blade cascade[J]. Experimental Thermal and Fluid Science,2018,90:220-230. doi: 10.1016/j.expthermflusci.2017.09.020
    [26] SCHABOWSKI Z, HODSON H. The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. 2007: 663-675. doi: 10.1115/GT2007-27623.
    [27] ZHONG F P,ZHOU C. Effects of tip gap size on the aerodynamic performance of a cavity-winglet tip in a turbine cascade[J]. Journal of Turbomachinery,2017,139(10):101009. doi: 10.1115/1.4036677
    [28] WHEELER A P S,SALEH Z. Effect of cooling injection on transonic tip flows[J]. Journal of Propulsion and Power,2013,29(6):1374-1381. doi: 10.2514/1.B34657
    [29] VAN NESS D K,CORKE T C,MORRIS S C. Plasma actuator blade tip clearance flow control in a linear turbine cascade[J]. Journal of Propulsion and Power,2012,28(3):504-516. doi: 10.2514/1.B34310
    [30] 田杨涛. 非均匀叶顶间隙对涡轮性能及尖区非定常流动的影响[D]. 北京: 北京航空航天大学, 2018.
    [31] ZHOU K,ZHOU C. Aerodynamic interaction between incoming vortex and tip leakage flow in a turbine cascade[J]. Journal of Turbomachinery,2018,140(11):111004. doi: 10.1115/1.4041514
    [32] QI L,ZHOU Y P. Turbine blade tip leakage flow control by unsteady periodic wakes of upstream blade row[J]. Procedia Engineering,2014,80:202-215. doi: 10.1016/j.proeng.2014.09.075
    [33] YARAS M I,SJOLANDER S A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades: part I—tip gap flow[J]. Journal of Turbomachinery,1992,114(3):652-659. doi: 10.1115/1.2929189
    [34] YARAS M I,SJOLANDER S A,KIND R J. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades: part Ⅱ—downstream flow field and blade loading[J]. Journal of Turbomachinery,1992,114(3):660-667. doi: 10.1115/1.2929190
    [35] MORPHIS G, BINDON J P. The effects of relative motion, blade edge radius and gap size on the blade tip pressure distribution in an annular turbine cascade with clearance[C]//Proceedings of ASME Turbo Expo 1988: Power for Land, Sea, and Air. 1988. doi: 10.1115/88-GT-256.
    [36] PALAFOX P,OLDFIELD M L G,LaGRAFF J E,et al. PIV maps of tip leakage and secondary flow fields on a low-speed turbine blade cascade with moving end wall[J]. Journal of Turbomachinery,2008,130(1):011001. doi: 10.1115/1.2437218
    [37] WHEELER A P S,ATKINS N R,HE L. Turbine blade tip heat transfer in low speed and high speed flows[J]. Journal of Turbo-machinery,2011,133(4):041025. doi: 10.1115/1.4002424
    [38] CHEN G, DAWES W N, HODSON H P. Numerical and experimental investigation of turbine tip gap flow[C]//Proc of the 29th Joint Propulsion Conference and Exhibit. 1993. doi: 10.2514/6.1993-2253.
    [39] WHEELER A P S,SANDBERG R D. Numerical investigation of the flow over a model transonic turbine blade tip[J]. Journal of Fluid Mechanics,2016,803:119-143. doi: 10.1017/jfm.2016.478
    [40] DORNEY D J,GRIFFIN L W,HUBER F W. A study of the effects of tip clearance in a supersonic turbine[J]. Journal of Turbo-machinery,2000,122(4):674-683. doi: 10.1115/1.1290400
    [41] 马宏伟, 修跃飞, 马融. 三孔跨音压力探针: 中国, CN105716788B [P]. 2019-02-22.
    [42] 马宏伟, 马融. 一种三孔压力探针梳: 中国, CN106768824B[P]. 2017-05-31.
    [43] O’DOWD D O, ZHANG Q, USANDIZAGA I, et al. Transonic turbine blade tip aero-thermal performance with different tip gaps: part II—tip aerodynamic loss[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 347-356. doi: 10.1115/GT2010-22780.
    [44] PASSMANN M,AUS DER WIESCHE S A,JOOS F. Focusing schlieren visualization of transonic turbine tip-leakage flows[J]. International Journal of Turbomachinery, Propulsion and Power,2020,5(1):1. doi: 10.3390/ijtpp5010001
    [45] BOOTH T C,DODGE P R,HEPWORTH H K. Rotor-tip leakage: part I—basic methodology[J]. Journal of Engineering for Power,1982,104(1):154-161. doi: 10.1115/1.3227244
    [46] MA H W, JIANG H K, QIU Y X. Visualizations of the unsteady flow field near the endwall of a turbine cascade[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2002: 233-240. doi: 10.1115/GT2002-30350.
    [47] WANG J H, LIU Y L, WANG X C, et al. Characteristics of tip leakage flow of the turbine blade with cutback squealer and coolant injection[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 1243-1251. doi: 10.1115/GT2010-22566.
    [48] VOLINO R J. Control of tip leakage in a high-pressure turbine cascade using tip blowing[J]. Journal of Turbomachinery,2017,139(6):061008. doi: 10.1115/1.4035509
    [49] VOLINO R J. Experiments with a new ribbed blade tip and endwall geometry on a high pressure turbine blade[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-44065.
    [50] TIAN Y T, MA H W, WANG L X. An experimental investigation of the effects of grooved tip geometry on the flow field in a turbine cascade passage using stereoscopic PIV[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017. doi: 10.1115/GT2017-63865.
    [51] TIAN Y T,MA H W,MA R. Stereoscopic PIV measurements of the flow field in a turbine cascade[J]. Journal of Thermal Science,2017,26(1):89-95. doi: 10.1007/s11630-017-0914-y
    [52] ZENG F,DU J L,HUANG L,et al. An experimental method for squealer tip flow field considering relative casing motion[J]. Chinese Journal of Aeronautics,2020,33(7):1942-1952. doi: 10.1016/j.cja.2020.03.002
    [53] SENTHIL KUMARAN R, KUMAR K, POORNIMA N. Experimen-tal study of unsteady pressure fluctuations due to tip leakage flows in an axial flow turbine[C]//Proceedings of ASME 2017 Gas Turbine India Conference. 2017. doi: 10.1115/GTINDIA2017-4868.
    [54] XIAO X W,MCCARTER A A,LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part I—pressure field and loss[J]. Journal of Turbomachinery,2001,123(2):296-304. doi: 10.1115/1.1368365
    [55] McCARTER A A,XIAO X W,LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part II—velocity field and flow physics[J]. Journal of Turbomachinery,2001,123(2):305-313. doi: 10.1115/1.1368880
    [56] ANDICHAMY V C, KHOKHAR G T, CAMCI C. An experimental study of using vortex generators as tip leakage flow interrupters in an axial flow turbine stage[C]//Proceedings of ASME Turbo Expo 2018: Power for Land, Sea, and Air. 2018. doi: 10.1115/GT2018-76994.
    [57] CAMCI C,DEY D,KAVURMACIOGLU L. Aerodynamics of tip leakage flows near partial squealer rims in an axial flow turbine stage[J]. Journal of Turbomachinery,2005,127(1):14-24. doi: 10.1115/1.1791279
    [58] CAMCI C, DEY D, KAVURMACIOGLU L. Tip leakage flows near partial squealer rims in an axial flow turbine stage[C]//Proceedings of ASME Turbo Expo 2003: Power for Land, Sea, and Air. 2003: 79-90. doi: 10.1115/GT2003-38979.
    [59] RAO N M, CAMCI C. Axial turbine tip desensitization by injection from a tip trench: part 1—effect of injection mass flow rate[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2004: 1075-1088. doi: 10.1115/GT2004-53256.
    [60] DEY D, CAMCI C. Development of tip clearance flow downstream of a rotor blade with coolant injection from a tip trench[C]//Proceedings of the 8th ISROMAC Conference. 2000: 572-579.
    [61] RAO N M, GUMUSEL B, KAVURMACIOGLU L, et al. Influence of casing roughness on the aerodynamic structure of tip vortices in an axial flow turbine[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2006: 893-903. doi: 10.1115/GT2006-91011.
    [62] RAO N M, CAMCI C. A flow visualization study of axial turbine tip desensitization by coolant injection from a tip trench[C]//Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition. 2008: 599-612. doi: 10.1115/IMECE2004-60943.
    [63] RAO N M, CAMCI C. Visualization of rotor endwall, tip gap, and outer casing surface flows in a rotating axial turbine rig[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2005: 509-517. doi: 10.1115/GT2005-68264.
    [64] 熊兵,万钎君,石小江,等. 不同叶尖间隙下的涡轮转子出口三维流场测量[J]. 航空动力学报,2012,27(5):1022-1028.

    XIONG B,WAN Q J,SHI X J,et al. Measurements of three-dimensional flow field at exit of a turbine rotor passage in different tip clearances[J]. Journal of Aerospace Power,2012,27(5):1022-1028.
    [65] FISCHER A,KÖNIG J,CZARSKE J,et al. Investigation of the tip leakage flow at turbine rotor blades with squealer cavity[J]. Experiments in Fluids,2013,54(2):1-15. doi: 10.1007/s00348-013-1462-1
    [66] KEGALJ M, SCHMID G, WARTZEK F, et al. Experimental and numerical investigation of tip leakage flow in a 1 1/2 stage turbine rig comparing flat and cavity-squealer tip geometries[C]//Proceedings of ASME Turbo Expo 2012: Power for Land, Sea, and Air. 2012: 1543-1557. doi: 10.1115/GT2012-69568
  • 加载中
图(37)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-12-25
  • 网络出版日期:  2021-11-12

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日