超燃冲压发动机模态转换及推力突变实验研究

连欢, 顾洪斌, 周芮旭, 李拓, 李忠朋

连欢, 顾洪斌, 周芮旭, 李拓, 李忠朋. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069
引用本文: 连欢, 顾洪斌, 周芮旭, 李拓, 李忠朋. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069
LIAN Huan, GU Hongbin, ZHOU Ruixu, LI Tuo, LI Zhongpeng. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069
Citation: LIAN Huan, GU Hongbin, ZHOU Ruixu, LI Tuo, LI Zhongpeng. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069

超燃冲压发动机模态转换及推力突变实验研究

基金项目: 

国家自然科学基金 11872366

国家自然科学基金 91941104

中国科学院前沿科学重点研究项目 QYZDJ-SSW-JSC022

详细信息
    作者简介:

    连欢(1988-), 女, 浙江绍兴人, 研究员。研究方向: 湍流燃烧。通信地址: 北京市海淀区北四环西路15号中国科学院力学研究所(100190)。E-mail: hlian@imech.ac.cn

    通讯作者:

    顾洪斌, E-mail: guhb@imech.ac.cn

  • 中图分类号: V433.9

Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments

  • 摘要: 针对双模态冲压发动机燃烧室模型开展了来流连续变化飞行马赫数5.0~6.0加速上行和6.0~5.0减速下行的地面直连试验研究。首先基于直连台架推力及时间离散质量加权沿程马赫数一维计算,观察到了加速上行过程中来流变化导致的亚燃-超燃工作模态转变及推力突变现象;通过高速纹影流动显示技术及流动特征提取,提炼了来流变化导致模态转换及推力突变过程中瞬态流动特征的发展规律;最后通过超声速核心流激波强度理论以及压比时空图对动态飞行轨迹模态转换及推力突变机制进行了讨论,研究结果表明:释热总量与内流道匹配是模态转换及推力变化过程的根本,主导流动特征是隔离段预燃激波强度演变特性,然而燃料横向射流气动节流以及释热反压在隔离段预燃激波削弱耗散之后,仍然可对来流进行减速并维持推力。同时,动态飞行轨迹气动热及燃烧热积分效应可改变热流边界层特性以及发动机内流道抗反压能力,造成亚燃与超燃工作边界变化。
    Abstract: Experiments are designed to investigate the transient fluid-combustion phenomenon during simulated transient acceleration and deceleration between flight Ma5.0~6.0. Flow induced ram-scram mode transition and thrust abruption were observed. The transient fluid-combustion evolutions were characterized with high speed Schlieren imaging and summarized into four phases. The fluid phenomena were discussed based on the impulse function analysis. The accumulated heat release from the thermodynamic cycle analysis dominates the mode transition and thrust abruption process. The isolator pseudo-combustion shock train system is the dominating flow feature during the mode transition. The backpressure induced by the supersonic crossflow contributes to maintain thrust. In addition, the heat transfer and boundary layer disturbance could shift the combustion mode transition limits.
  • 常规高超声速风洞是以纯净空气为工作介质和以对流方式加热的高超声速风洞,是高超声速飞行器研制必备的试验设备。20世纪50年代,为了满足高超声速飞行器研制需要,人们开始建造常规高超声速风洞,自此以后,随着高超声速飞行器的不断发展,常规高超声速风洞一直处于改造和建设之中,设备的规模越来越大。以风洞喷管的出口尺寸计,常规高超声速风洞从最初的200~300mm量级,主要解决弹头等简单飞行器外形的气动研究和验证问题;发展到500~700mm量级,主要解决飞船等带表面凸起的飞行器外形的气动研究和验证问题;再发展到目前的1000~1200mm量级,可解决航天飞机等较复杂飞行器外形的气动研究和验证问题[1-2]。展望今后高超声速飞行器的发展,美国已经对2400~3000mm量级常规高超声速风洞提出建设需求[3]

    但是,随着风洞尺寸的增加,风洞运行所耗费的能源迅速增加[4]。以常规高超声速风洞在马赫数5至8时所需的加热功率为例,不同尺寸的风洞所需加热功率为:500~700mm量级,所需加热功率约6~8MW;1000~1200mm量级,所需加热功率约40~50MW;2400~3000mm量级,所需加热功率约250~320MW。

    如何在满足高超声速飞行器试验对风洞尺寸要求的条件下,节省风洞运行时的能量消耗,已成为常规高超声速风洞设计技术发展必须考虑的重要问题。针对这个问题,本文从常规高超声速风洞的气动布局角度进行了初步探索。首先总结现有常规高超声速风洞的气动布局;在此基础上,对常规高超声速风洞中的能量运行特点,以及不同布局中工作气体余热的处理情况进行分析;然后,结合常规高超声速风洞的运行特点,分析风洞中可能采用的余热利用技术;最后,提出一种基于余热利用的常规高超声速风洞布局方案,并对该方案中的各种关键问题进行讨论。

    按照常规高超声速风洞的运行方式,风洞的气动总体布局分成3类,第一类是暂冲式,第二类是连续式,第三类是暂冲-连续混合式。3类常规高超声速风洞的气动总体布局各有其特点,在实际建成的风洞中均有应用。迄今为止,绝大多数常规高超声速风洞,无论尺度大小,功能如何,采用的大多是暂冲式气动布局;采用连续式气动布局的风洞较少,最典型的是美国AEDC的B、C风洞[5-7];采用暂冲-连续混合式气动布局的常规高超声速风洞更少,最典型的是美国Langley的1251A风洞。现将3类气动布局的形式总结如下[8-10]

    常规高超声速风洞的暂冲式布局也有3种形式:引射式、真空式以及引射-真空混合式。典型的引射式布局形式和真空式布局形式的示意图如图 12所示。

    图  1  引射-暂冲式常规高超声速风洞气动布局
    Fig.  1  Injector type intermittent aerodynamic layout of conventional hypersonic wind tunnel
    图  2  真空-暂冲式常规高超声速风洞气动布局
    Fig.  2  Vacuum type intermittent aerodynamic layout of conventional hypersonic wind tunnel

    为了获得更宽的马赫数、雷诺数模拟范围,常规高超声速风洞还可采用引射-真空混合式布局,如图 3所示。

    图  3  引射 & 真空-暂冲式常规高超声速风洞气动布局
    Fig.  3  Injector & vacuum type intermittent aerodynamic layout of conventional hypersonic wind tunnel

    暂冲式常规高超声速风洞的运行方式是气罐中的压缩空气经过加热系统后达到所需的温度,然后通过型面喷管,在试验段形成试验所需的高超声速流场,最后经由超声速扩散段升压后进入引射排气系统,排入大气,或经过冷却器进入真空系统,然后由真空泵系统排入大气。

    典型的连续式布局的示意图如图 4所示。

    图  4  连续式常规高超声速风洞气动布局
    Fig.  4  Continuous aerodynamic layout of conventional hypersonic wind tunnel

    连续式常规高超声速风洞的运行方式是:封闭管路系统中一定密度的空气经过压缩机系统升压,再经过加热系统升温,达到建立流场所需的压力和温度,然后通过型面喷管,在试验段形成试验所需马赫数的流场;完成试验功能的气流经由超声速扩散段初步升压后,进入冷却器,降温后由真空系统进一步升压,进入压缩机系统,经历下一个循环。

    暂冲-连续混合式气动布局常规高超声速风洞,结合了连续式常规高超声速风洞和真空布局的暂冲式常规高超声速风洞的特点,可以模拟的飞行高度更高,相应的雷诺数范围更大,可达到的马赫数更大。

    Langley的1251A风洞就采用了这种布局方案,其示意图如图 5所示。

    图  5  暂冲-连续混合式常规高超声速风洞气动布局
    Fig.  5  Intermittent & continuous aerodynamic layout of conventional hypersonic wind tunnel

    暂冲-连续混合式常规高超声速风洞的运行方式是,通过关、启相应支路上的阀门,风洞既可以按连续式常规高超声速风洞的方式运行,也可以按真空布局的暂冲式常规高超声速风洞的方式运行。

    在常规高超声速风洞运行过程中,是否存在可节省的能量,需要从常规高超声速风洞中能量流通的过程来分析。

    常规高超声速风洞的运行过程可近似用理想气体的一维流动理论来描述。根据此理论,一定流量的空气,在常规高超声速风洞喷管出口形成所需马赫数的流场,需要2种能量,压力势能和热能;2种能量分别由压缩机系统和加热器系统提供,如图 6所示。

    图  6  常规高超声速风洞运行中能量的变化过程
    Fig.  6  Energy change during operation of hypersonic wind tunnel

    经过常规高超声速风洞喷管后,气体中2种能量大部分转化为气体的动能。根据理想气体的一维流动理论,喷管内的流动为一维等熵流动,喷管仅起能量转化的作用,而进入喷管的气体总能量与喷管出口的气体总能量相等。

    在试验段内,由于激波的作用,气体损失掉大部分的势能,而热能未损失。流出试验段后,气体完成了试验功能,成为废气,排入超扩段,而废气包含着未损失的热能。风洞运行中气流能量的主要变化过程如图 6所示。

    上述分析给出了常规高超声速风洞所有气动布局共同的能量运行特点:风洞运行需要热能,但基本不损耗热能;风洞的废气包含着未损失的热能。但是,各气动布局的能量运行又有各自不同的特点,主要表现在各气动布局对于废气中热能的处理上。在暂冲-引射式气动布局中,超扩段中废气的热能,随废气通过亚扩段和消音塔直接排入大气中;在暂冲-真空式气动布局中,超扩段中废气进入冷却器,废气的热能通过冷却器全部消耗掉,废气再经真空系统排入大气;在连续式气动布局中,超扩段中废气先进入冷却器,废气的热能通过冷却器全部消耗掉,然后废气被增压回收,循环利用。后2种布局不回收废气中的热能,还要再损失冷却器运行所需的能量。

    上述分析基于理想流体的理论,未考虑气体沿程的热损失;实际风洞运行中,气体沿程的热损失是确实存在的。根据边界层理论,可以初步估计出废气中包含的热能,其值约为气体总加热量的80%。

    3种典型气动布局的热能损失位置及量级如表 1所示,表中还给出了运行冷却器消耗热能时的附加能量损失的量级。能量的量级用热能损失的量占气体被加热的总热量百分比表示。

    表  1  3种典型布局的热能损失位置及量级
    Table  1  Location and magnitude of thermal losses in three typical layouts
    沿程
    损失
    排空
    损失
    冷却
    损失
    附加
    损失
    暂冲-引射式20%80%00
    暂冲-真空式20%080%5%
    连续式20%080%5%
    下载: 导出CSV 
    | 显示表格

    由上节的分析可知,现有的常规高超声速风洞的气动布局均未进行剩余热量回收。为了降低新建大尺度常规高超声速风洞的运行成本,在设计和建设前,需要研究常规高超声速风洞的剩余能量回收技术,并将之应用于风洞气动布局中,找到适合大尺寸常规高超声速风洞的新型布局。

    到目前为止,现有的常规高超声速风洞设计中从未考虑过剩余热能的回收问题,无经验可利用。这个问题的解决需要借助工业上余热回收的做法。工业上余热回收有3种方法[11],一是用蓄热材料回收,二是转化为其他能量形式,三是换热回收。3种方法各有特点,适用范围也各不相同。蓄热材料回收法简单易实现,适用于总热量少,需要方便移动的情况;转化为其他能量的方法适用于余热量大且连续供应的情况,通常转化设备复杂;换热回收法原理简单,易于实现,通过换热器,将余热转移给需要加热的其他介质。

    大尺寸常规高超声速风洞中剩余热量的特点是总量大,持续时间短,不连续供应。结合余热回收方法适用范围的分析可知,适合大尺寸常规高超声速风洞中余热回收的方法是换热回收法, 即余热回收通过将剩余热能转移给风洞来流实现。

    经过多年的研究和发展,现有常规高超声速风洞的气动布局均能保证风洞流场具备优良的流场品质。大尺寸常规高超声速风洞的气动布局设计既要满足模拟范围,保证流场品质优良,又要满足节能,这就需要从技术成熟的常规高超声速风洞的气动布局中选择出能与余热回收技术相结合的气动布局,并将余热回收技术应用于选择出的气动布局中。

    根据本文第2节中关于现有常规高超声速风洞的气动布局特点的分析可知,引射&真空-暂冲式常规高超声速风洞气动布局既具有较宽的马赫数和雷诺数模拟范围,而且在参数模拟范围内流场品质优良,又易于结合换热回收技术。将两者结合得到的适合于大尺度常规高超声速风洞的气动布局如图 7所示。

    图  7  大尺度常规高超声速风洞的节能气动布局
    Fig.  7  Large scale energy-saving aerodynamic layout of conventional hypersonic wind tunnel

    这种布局形式是在暂冲式常规高超声速风洞的引射-真空布局形式的基础上,通过结合余热回收技术得到新的布局形式,其主要特点表现在结构形式和运行方式上的改变。结构形式上的主要改变包括:第一,在引射分支和真空分支前,超声速扩散段后增设换热器;第二,气源出来的气体不是直接进入加热系统,而是先经过换热器,再进入加热系统;第三,去掉了真空分支的冷却器。

    这种布局形式的运行方式是:从气源出来的气流经过换热器初步加热,再输送到加热器进一步加热,达到相应马赫数所需的温度,然后经稳定段、喷管,在试验段形成流场;试验后的气流经超声速扩散段减速增压,在换热器中对冷气流加热,然后进入引射分支或真空分支,排入大气。

    实现这种节能布局的关键技术是高效换热器的设计。在这种换热器中,加热气流为高温低压气流;被加热气流为高压气流,其流量与加热气流的相同;换热过程要求快速且充分。如何设计出适合这种节能布局的高效换热器,需要解决以下问题,一是换热器的机理如何确定,二是换热器的性能参数如何计算,三是换热器的结构形式如何确定,等等。

    普通换热器设计时,需要将冷、热介质的传输管道交叉,利用管壁的热传导换热[12]。如果风洞节能布局中的换热器采用普通换热器设计方案,则设计时需要将风洞的超扩段从风洞的高压进气管道中穿过。由于超扩段内的加热气流为高温低压气流,进气管中的被加热气流为高压气流,而且两者流量相同,因此,超扩段的直径远大于进气管道直径,而进气管道内的气流压力远大于超扩段内的气流压力。采用交叉结构形式的换热器的缺点是结构庞大、热损失大、传热速度慢以及换热效率低。

    为解决上述问题,需要采用换热方式不同于普通换热器的新型换热器。一种可行的方案是换热器采用“架桥”的结构形式。在此方案中,输送冷、热气体的管道不需要直接交叉,依靠壁面传导热量,而需要在冷、热气体间设置热管作为热量传输的桥梁。用热管传热的换热器的原理如图 8所示。

    图  8  用热管传热的换热器的原理
    Fig.  8  Principle of heat exchanger using heat pipe

    由于热管传热速度快,传热效率高,只传输冷热气体间的热量,因此,相对于普通换热器,用热管传热的换热器结构简单、体积较小、热损失小且传热效率高。

    目前,适用于常规高超声速风洞所需温度、压力范围内的热管,技术已经成熟,可选择的种类很多,价格也比较便宜[13]。采用热管传热的换热器的设计和制造已经可行,但尚需在实际应用中不断地优化其结构和性能。

    通过第2节中对于高超声速风洞工作阶段能量运行的分析,得知风洞工作时存在热能的浪费,因此,在保留暂冲-引射方案流场品质高特点的基础上,增加余热回收技术得到了新的风洞方案。实际上,高超声速风洞的运行过程不仅包括工作阶段,还包括起动阶段和结束阶段。在起动阶段,主要进行温度调节和压力调节,使来流满足风洞工作状态的总温和总压要求。风洞工作完成后,不需要来流保持工作时的状态,主要阀门开始关闭,风洞运行进入结束阶段,直到阀门完全关闭,该阶段完成。高超声速风洞运行的起动阶段和结束阶段均需要消耗大量的热能,新布局方案的节能分析需分段进行。

    在风洞工作阶段,如2.1节所述,考虑到气流的沿程热损失,风洞工作阶段剩余热量估计为总加热量的80%;考虑到热管传热的换热器效率比较高,应该具有不低于80%的换热效率。因此,新布局方案在风洞工作阶段可节省的热量不低于加入热能的64%。

    在起动阶段,由于气流的总温和总压不满足试验要求,在已有的方案中,这些气流的热量通常被损耗掉。风洞的起动阶段时间越长,损耗的热量越多。时间长短主要与马赫数、总温、总压调节系统和调节方法等因素有关,例如,对于采用蓄热式加热器和冷热气流掺混调节总温的风洞,起动阶段的时间约为60~100s,通常,马赫数低时时间短,马赫数高时时间长;对于采用直接加热的风洞,起动阶段的时间约为600~900s。当常规高超声速风洞采用新布局方案时,由于采用了余热回收技术,再考虑到喷管在风洞起动阶段的沿程损失小于工作阶段的损失,节省的热能不低于加入热能的70%。

    结束阶段的热能损耗取决于风洞关闭系统的速率。在已有的方案中,这些气流的热量被损耗掉;在新方案中,由于余热回收技术的局限性,这些气流的热量也无法回收。另外,风洞试验全部结束后,加热器的余热在新方案和已有方案中均没有回收。相应的回收技术如何与风洞方案结合还需进一步的研究。

    在总结现有常规高超声速风洞气动布局的基础上,结合大尺寸常规高超声速风洞能量运行的特点,给出了一种新的大尺度常规高超声速风洞气动布局形式,该布局形式是节能的。同时,对于实现这种布局形式的关键技术--换热器,也给出了一种可行的方案。

    鉴于本研究尚属常规高超声速风洞节能布局的初步研究,对于该气动布局更加详细的问题,如结构形式及参数、运行参数及控制等,均需要在后续工作中进一步研究。'

  • 图  1   双模态模型燃烧室

    Fig.  1   Dual-mode model combustor

    图  2   试验工况

    Fig.  2   Experimental conditions

    图  3   可调加热器总压

    Fig.  3   Total pressure of the transient operation heater

    图  4   推力传感器测量数据

    Fig.  4   Thrust measurement during simulated acceleration and deceleration

    图  5   质量加权马赫数

    Fig.  5   Mass weighted average Ma during simulated acceleration and deceleration

    图  6   (a) ABC加速上行轨迹纹影; (b) ABC加速上行轨迹CH*自发光

    Fig.  6   (a) Schlieren imaging during acceleration ABC; (b) CH* chemiluminescence during acceleration ABC

    图  7   (a) ADC加速上行轨迹纹影; (b) ADC加速上行轨迹CH*自发光

    Fig.  7   (a) Schlieren imaging during acceleration ADC; (b) CH* chemiluminescence during acceleration ADC

    图  8   ABC工况燃烧模式

    Fig.  8   Combustion regime of case A, B and C

    图  9   动态飞行路径超声速核心流截面与预燃激波强度分析

    Fig.  9   Impulse function analysis during simulated acceleration and deceleration

    图  10   (a) ABC沿程压比; (b) ADC沿程压比

    Fig.  10   (a) Pressure ratio during acceleration ABC; (b) Pressure ratio during acceleration ADC

    图  11   (a) ABCADC路径截面压比p2/pref; (b) ABCADC路径截面压比p3/pref

    Fig.  11   (a) p2/pref cutoff with route ABC and ADC; (b) p3/pref cutoff with route ABC and ADC

    图  12   热流边界层影响工作边界示意图

    Fig.  12   Illustration of mode transition shift due to boundary layer disturbance

    表  1   试验工况

    Table  1   Experimental parameters

    实验工况 模拟飞行马赫数 模拟飞行高度/km 模拟动压/kPa 模拟总压/kPa 模拟总温/K 实验时间/s 加热气体总流量/(g·s-1) 煤油流量/(g·s-1)
    A 5.0 20.99 82 1548 1249 5 1878 28
    B 5.6 23.93 64 1678 1475 5 1283 28
    C 6.0 26.28 50 1939 1648 5 1178 28
    ABC 5.0~5.6~6.0 20.99~23.93~26.28 82~64~50 1548~1678~1939 1249~1475~1648 10 1878~1283~1178 28
    ADC 5.0~6.0 20.99~26.28 82~50 1548~1939 1249~1648 10 1878~1178 28
    CBA 6.0~5.6~5.0 26.28~23.93~20.99 50~64~82 1939~1678~1548 1648~1475~1249 10 1178~1283~1878 28
    CDA 6.0~5.0 26.28~20.99 50~82 1939~1548 1648~1249 10 1178~1878 28
    下载: 导出CSV
  • [1]

    BUILDER C H. On the thermodynamic spectrum of airbreath-ing propulsion[R]. AIAA 1964-243, 1964. doi: 10.2514/6.1964-243

    [2]

    HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC: AIAA, Inc., 1994. doi: 10.2514/4.470356

    [3]

    MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[R]. AIAA 1998-1566, 1998. doi: 10.2514/6.1998-1566

    [4] 乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1): 1-12. DOI: 10.3969/j.issn.1672-9897.2000.01.001

    LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001

    [5] 刘陵, 刘敬华, 张榛, 等. 超声速燃烧与超声速燃烧冲压发动机[M]. 西安: 西北工业大学出版社, 1993.
    [6] 冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京: 北京理工大学出版社, 2016.

    FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic aircraft[M]. Beijing: Beijing institute of technology press, 2016.

    [7]

    SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power, 1993, 9(4): 515-520. doi: 10.2514/3.23653

    [8]

    PRATT D, HEISER W. Isolator-combustor interaction in a dual-mode scramjet engine[R]. AIAA 1993-358, 1993. doi: 10.2514/6.1993-358

    [9] 张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量, 2003, 17(1): 88-92. DOI: 10.3969/j.issn.1672-9897.2003.01.022

    ZHANG P, YU G. The study of one-dimensional flow analysis model of the combustor in supersonic combustion experiments[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022

    [10] 郑小梅, 徐大军, 蔡国飙. 超燃冲压发动机性能的初步分析[J]. 航空学报, 2007, 28(S1): 35-41. DOI: 10.3321/j.issn:1000-6893.2007.z1.007

    ZHENG X M, XU D J, CAI G B. A preliminary study on hypersonic airbreathing engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007

    [11] 余勇, 刘卫东, 王振国. 超声速燃烧室性能一维数值模拟[J]. 流体力学实验与测量, 2004, 18(3): 36-41. DOI: 10.3969/j.issn.1672-9897.2004.03.008

    YU Y, LIU W D, WANG Z G. A one-dimensional numerical analysis of supersonic combustor performance[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008

    [12] 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 四川绵阳: 中国空气动力研究与发展中心, 2016.

    CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4~7[D]. Mianyang, Sichuan: China Aerodynamics Research and Development Center, 2016.

    [13] 陈强, 陈立红, 顾洪斌, 等. 释热分布对超燃冲压发动机性能的影响及优化[J]. 推进技术, 2009, 30(2): 135-138. DOI: 10.3321/j.issn:1001-4055.2009.02.002

    CHEN Q, CHEN L H, GU H B, et al. Investigation of the effect and optimization of heat release distributions in the combustor on scramjet performance[J]. Journal of Propulsion Technology, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002

    [14]

    MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. doi: 10.1016/S0376-0421(98)00011-6

    [15]

    WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. doi: 10.2514/3.50600

    [16]

    CARROLL B F, DUTTON J C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts[J]. Journal of Propulsion and Power, 1990, 6(2): 186-193. doi: 10.2514/3.23243

    [17]

    CARROLL B F, DUTTON J C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1992, 30(1): 43-48. doi: 10.2514/3.10880

    [18]

    CARROLL B F, LOPEZ-FERNANDEZ P A, DUTTON J C. Computations and experiments for a multiple normal shock/boundary-layer interaction[J]. Journal of Propulsion and Power, 1993, 9(3): 405-411. doi: 10.2514/3.23636

    [19]

    SMART M. Scramjet isolators[R]. RTO-EN-AVT-185, 2010.

    [20]

    WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA-TN-D-8156, 1976. https://ntrs.nasa.gov/citations/19760013056

    [21]

    RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493. doi: 10.2514/3.24061

    [22]

    DO H, IM S K, MUNGAL M G, et al. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3): 679-691. doi: 10.1007/s00348-011-1077-3

    [23] 田野, 杨顺华, 邓维鑫, 等. 超燃冲压发动机燃烧室空气节流技术研究[J]. 推进技术, 2014, 35(4): 499-506. DOI: 10.13675/j.cnki.tjjs.2014.03.014

    TIAN Y, YANG S H, DENG W X, et al. A study on air throttling technology in scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014

    [24]

    MITANI T, CHINZEI N, KANDA T. Reaction and mixing-controlled combustion in scramjet engines[J]. Journal of Propulsion and Power, 2001, 17(2): 308-314. doi: 10.2514/2.5743

    [25]

    CHUN J, SCHEUERMANN T, VON WOLFERSDORF J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA 2006-8063, 2006. doi: 10.2514/6.2006-8063

    [26]

    TAKAHASHI S, DEMISE S, OSHITA M, et al. Correlation between heat flux distribution and combustion mode in a scramjet combustor[J]. Physics Letters B, 2001, 663(s1-2): 107-110. http://www.irgrid.ac.cn/handle/1471x/699393

    [27]

    LE D B, GOYNE C P, KRAUSS R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5): 1050-1057. doi: 10.2514/1.32591

    [28]

    ZHANG C L, CHANG J T, MA J X, et al. Effect of Mach number and equivalence ratio on the pressure rising variation during combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2018, 72: 516-524. doi:10.1016/j.ast.2017. 11.042

    [29] 肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346. DOI: 10.13675/j.cnki.tjjs.170760

    XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760

    [30]

    FOTIA M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2014, 31(1): 69-78. doi: 10.2514/1.B35171

    [31]

    ZHANG C L, CHANG J T, FENG S, et al. Pressure rising slope variation accompanying with combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2017, 68: 370-379. doi: 10.1016/j.ast.2017.05.034

    [32]

    ZHANG C, YANG Q C, CHANG J T, et al. Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet[J]. Acta Astronautica, 2015, 110: 89-98. doi: 10.1016/j.actaastro.2014.11.023

    [33]

    CAO R F, CHANG J T, BAO W, et al. Analysis of combustion mode and operating route for hydrogen fueled scramjet engine[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5928-5935. doi: 10.1016/j.ijhydene.2013.02.135

    [34]

    BAO W, YANG Q C, CHANG J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248. doi: 10.2514/1.B34921

    [35]

    ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica, 2017, 137: 44-51. doi: 10.1016/j.actaastro.2017.03.023

    [36]

    YANG Q C, HU J C, CHANG J T, et al. Experimental study on combustion mode transition effects in a strut-based scramjet combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(4): 764-771. doi: 10.1177/0954410014539288

    [37]

    CAO R F, CHANG J T, TANG J F, et al. Study on combustion mode transition of hydrogen fueled dual-mode scramjet engine based on thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21251-21258. doi: 10.1016/j.ijhydene.2014.10.082

    [38]

    YANG Q C, CHANG J T, BAO W, et al. A mechanism of combustion mode transition for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9791-9797. doi: 10.1016/j.ijhydene.2014.04.090

    [39]

    FOTIA M L, DRISCOLL J F. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2012, 28(1): 83-95. doi: 10.2514/1.B34367

    [40]

    FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2012, 29(1): 261-273. doi: 10.2514/1.B34486

    [41] 浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报, 2019, 34(5): 1119-1126. DOI: 10.13224/j.cnki.jasp.2019.05.018

    FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018

    [42]

    MASUMOTO R, TOMIOKA S, KUDO K, et al. Experi-mental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2): 346-355. doi: 10.2514/1.B34020

    [43]

    MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. doi: 10.1016/j.ast.2019.105316

    [44] 潘余, 李大鹏, 刘卫东, 等. 超燃冲压发动机燃烧模态转换试验研究[J]. 爆炸与冲击, 2008, 28(4): 293-297. DOI: 10.3321/j.issn:1001-1455.2008.04.002

    PAN Y, LI D P, LIU W D, et al. Combustion mode transition in a scramjet engine[J]. Explosion and Shock Waves, 2008, 28(4): 293-297. doi:10. 3321/j.issn:1001-1455.2008.04.002

    [45]

    KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operations in a scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 760-763. doi: 10.2514/1.3683

    [46]

    KOBAYASHI K, TOMIOKA S, KATO K, et al. Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3): 518-526. doi: 10.2514/1.19294

    [47]

    KOUCHI T, MASUYA G, MITANI T, et al. Mechanism and control of combustion-mode transition in a scramjet engine[J]. Journal of Propulsion and Power, 2012, 28(1): 106-112. doi: 10.2514/1.B34172

    [48]

    WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. doi: 10.1016/j.proci.2014.09.005

    [49]

    SUN M B, WANG Z G, LIANG J H, et al. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Journal of Propulsion and Power, 2008, 24(4): 688-696. doi: 10.2514/1.34970

    [50]

    MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. doi: 10.1016/j.proci.2008.06.192

    [51]

    WANG Z P, LI F, GU H B, et al. Experimental study on the effect of combustor configuration on the performance of dual-mode combustor[J]. Aerospace Science and Technology, 2015, 42: 169-175. doi: 10.1016/j.ast.2015.01.008

    [52]

    YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925. doi: 10.1016/j.proci.2016.07.040

    [53]

    NAKAYA S, KINOSHITA R, LEE J, et al. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3749-3756. doi: 10.1016/j.proci.2018.09.011

    [54]

    SHE Z S, ZOU H Y, XIAO M J, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, 2018, 857: 449-468. doi: 10.1017/jfm.2018.710

    [55]

    LI X, TONG F L, YU C P, et al. Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer[J]. Physics of Fluids, 2019, 31(10): 106101. DOI: 10.1063/1.5115541

    [56] 周芮旭, 连欢, 顾洪斌, 等. 激光诱导荧光聚焦纹影系统及超声速燃烧流场应用[J]. 气体物理, 2020, 5(2): 14-19. DOI: 10.19527/j.cnki.2096-1642.0799

    ZHOU R X, LIAN H, GU H B, et al. Laser-induced fluorescence focusing schlieren system and its application in scramjet combustor[J]. Physics of Gases, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799

    [57]

    LIAN H, GU H B, YUE L J, et al. Characterization of combustion oscillations in a cavity flame holder during acceleration experiments[C]//Proc of the 1st International Conference on High-Speed Vehicle Science Technology.2018.

  • 期刊类型引用(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 . 百度学术
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  142
  • PDF下载量:  81
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-10-14
  • 刊出日期:  2021-02-24

目录

/

返回文章
返回
x 关闭 永久关闭