留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小尺寸Schmidt-Boelter热流传感器的研制

朱新新 朱涛 杨凯 杨庆涛 王辉

朱新新,朱 涛,杨 凯,等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学,2021,35(4):106-111 doi: 10.11729/syltlx20200065
引用本文: 朱新新,朱 涛,杨 凯,等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学,2021,35(4):106-111 doi: 10.11729/syltlx20200065
ZHU X X,ZHU T,YANG K,et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):106-111. doi: 10.11729/syltlx20200065
Citation: ZHU X X,ZHU T,YANG K,et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):106-111. doi: 10.11729/syltlx20200065

小尺寸Schmidt-Boelter热流传感器的研制

doi: 10.11729/syltlx20200065
基金项目: 中国空气动力研究与发展中心风雷青年创新基金(KT-FLJJ-2019-002)
详细信息
    作者简介:

    朱新新:(1988-),男,云南保山人,硕士,助理研究员。研究方向:气动热与热防护试验测试技术。通信地址:四川省绵阳市二环路南段6号15信箱504分箱(621000)。E-mail:xinxincomplex@126.com

    通讯作者:

    E-mail:zhutao00011@sina.com

  • 中图分类号: V441

Development of small size Schmidt-Boelter heat flux sensor

  • 摘要: 为满足常规高超声速风洞试验的热流测量需求,研制了一种小尺寸Schmidt-Boelter热流传感器。建立了传感器仿真模型并基于该模型对其结构尺寸开展了优化设计。根据优化结果,制作了尺寸为Φ 3×10 mm的传感器样件。在弧光灯热流标定系统上进行了性能测试,试验结果表明:该传感器灵敏度系数大于30 μV·m2/kW,响应时间约50 ms。
  • 图  1  热阻层

    Figure  1.  Thermal resistance layer

    图  2  两种接触结构

    Figure  2.  Two kinds of contact structure

    图  3  温度分布

    Figure  3.  Temperature distribution

    图  4  温升和归一化热流曲线

    Figure  4.  Temperature rise and heat flux normalized curve

    图  5  S-B热流传感器

    Figure  5.  Schmidt Boelter Gage

    图  6  热流标定曲线

    Figure  6.  Heat flux calibration curve

    图  7  响应时间曲线

    Figure  7.  Response time curve

    图  8  长时间测量曲线

    Figure  8.  Test curve during long time

    表  1  两种接触结构的仿真结果

    Table  1.   The simulation results of two contact structures

    状态编号 kH-AlN/(W·m–2·K–1 kH-Al/(W·m–2·K–1 $S_{q}^{\prime} $ /(K·m2·kW–1 t0.95/ms $t_{0.95}^{\prime} $/ms 接触结构
    A 1000 100 3.67 685 195 全接触
    B 1000 500 3.85 840 600 全接触
    C 10 000 100 0.41 445 405 全接触
    D 1000 100 3.60 610 15 两端
    E 1000 500 3.63 670 25 两端
    F 10 000 100 0.37 135 20 两端
    下载: 导出CSV

    表  2  传感器标定结果

    Table  2.   The calibration results of two sensors

    传感器编号 Sq /(μV·m2·kW–1 t0.95 /ms $t_{0.95}^{\prime} $/ms
    1# 31 99 49
    2# 34 121 57
    下载: 导出CSV
  • [1] 陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q,TU G H,ZHANG Y F,et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [2] 欧阳金栋,刘慧慧,邓进,等. 高超声速飞行器结构热防护技术现状综述[J]. 教练机,2017(1):39-43. doi: 10.3969/j.issn.1005-7420.2017.01.007

    OUYANG J D,LIU H H,DENG J,et al. Research status of structural thermo protection technology for hypersonic speeding missile[J]. Trainer,2017(1):39-43. doi: 10.3969/j.issn.1005-7420.2017.01.007
    [3] 王璐,王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺,2016,46(1):1-6. doi: 10.3969/j.issn.1007-2330.2016.01.001

    WANG L,WANG Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials & Technology,2016,46(1):1-6. doi: 10.3969/j.issn.1007-2330.2016.01.001
    [4] 孟松鹤,丁小恒,易法军,等. 高超声速飞行器表面测热技术综述[J]. 航空学报,2014,35(7):1759-1775. doi: 10.7527/S1000-6893.2013.0401

    MENG S H,DING X H,YI F J,et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7):1759-1775. doi: 10.7527/S1000-6893.2013.0401
    [5] 刘初平, 杨庆涛, 王辉, 等. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.
    [6] 韩曙光,贾广森,文帅,等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006

    HAN S G,JIA G S,WEN S,et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006
    [7] 毕志献,韩曙光,伍超华,等. 磷光热图测热技术研究[J]. 实验流体力学,2013,27(3):87-92.

    BI Z X,HAN S G,WU C H,et al. Phosphor thermography study ingun tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(3):87-92.
    [8] 张仕忠,李进平,张晓源,等. 一种新型瞬态量热计的研制[J]. 中国科学: 技术科学,2018,48(5):558-564. doi: 10.1360/N092017-00245

    ZHANG S Z,LI J P,ZHANG X Y,et al. Development of a novel transient calorimeter[J]. Scientia Sinica (Technologica),2018,48(5):558-564. doi: 10.1360/N092017-00245
    [9] 曾磊,桂业伟,贺立新,等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032

    ZENG L,GUI Y W,HE L X,et al. Study on data processing methods for coaxial-thermal-couple heat-flux sensor[J]. Journal of Engineer-ing Thermophysics,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032
    [10] MATTHEWS R K, NUTT K W, WANNENWETSCH G D, et al. Developments in aerothermal test techniques at the AEDC supersonic-hypersonic wind tunnels[C]//Proc of the 20th Thermophysics Confe-rence. 1985. doi: 10.2514/6.1985-1003
    [11] NAKOS J T. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.[R]. SAND2010-7062, 2010. doi: 10.2172/1005030
    [12] KIDD C T, SCOTT W T. New techniques for transient heat-transfer measurement in hypersonic flow at the AEDC[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-823
    [13] KIDD C T, ADAMS J C Jr. Development of a heat-flux sensor for commonality of measurement in AEDC hypersonic wind tunnels[C]//Proc of the 21st Aerodynamic Measurement Technology and Ground Testing Conference. 2000. doi: 10.2514/6.2000-2514
    [14] HOFFIE A F. Convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow[D]. Virginia: Virginia Polytech-nic Institute and State University, 2006.
    [15] Vatell Corporation. Certificate of calibration of Schmidt-Boelter heat flux trans ducer[Z]. Serial Number: 0118, Date calibrated: 10-09-2013.
    [16] 罗浩,彭同江. 一种多级式热电堆型微量热流传感器的设计与制备[J]. 西南科技大学学报,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012

    LUO H,PENG T J. Design and preparation of a multi-stage thermopile-type micro-heat flow flux sensor[J]. Journal of Southwest University of Science and Technology,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012
    [17] 储小刚. 热电堆式热流传感器的设计与实验研究[D]. 南京: 南京理工大学, 2016.

    CHU X G. Design and experimental study of thermoelectric heat flux sensor[D]. Nanjing: Nanjing University of Science and Technology, 2016. doi: 10.7666/d.Y3046258
    [18] 石逸武,罗永祥,许喜銮,等. 硅油及填料对导热硅脂接触热阻的影响[J]. 电子与封装,2013,13(8):30-33. doi: 10.16257/j.cnki.1681-1070.2013.08.011

    SHI Y W,LUO Y X,XU X L,et al. Effect of silicone oil and filler on thermal resistance of thermal conductive grease[J]. Electronics & Packaging,2013,13(8):30-33. doi: 10.16257/j.cnki.1681-1070.2013.08.011
    [19] 朱新新,杨庆涛,王辉,等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学,2018,32(6):34-40. doi: 10.11729/syltlx20180071

    ZHU X X,YANG Q T,WANG H,et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):34-40. doi: 10.11729/syltlx20180071
    [20] MURTHY A V,TSAI B K,SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):293-305. doi: 10.6028/jres.105.033
    [21] 朱新新,王辉,杨庆涛,等. 弧光灯热流标定系统的光学设计[J]. 光学学报,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001

    ZHU X X,WANG H,YANG Q T,et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001
    [22] 杨凯,杨庆涛,朱新新,等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11

    YANG K,YANG Q T,ZHU X X,et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11
    [23] WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  34
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-07-20
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日