A review of optical diagnostic platforms and techniques applied in internal combustion engines
-
摘要: 活塞式内燃发动机是现代工业中应用最为广泛的动力机械装置。由于其内部燃料喷射、蒸发、燃烧等复杂的工作过程会对发动机的结构可靠性、能量利用效率和污染物生成产生极大影响,研究内部过程的物理机理并确定控制策略对于发动机的设计和改进具有重要的科学意义和实用价值。近年来,为更加深入理解发动机内部工作过程,研究人员广泛采用光学诊断试验技术来测量发动机缸内流动和燃烧特性。本文首先介绍了各类用于模拟发动机工作过程的试验台架(如定容燃烧弹、快速压缩机、光学发动机等)。在此基础上,分析了各类光学诊断技术的基本原理及其在发动机研究中的应用。光学诊断技术分为两类进行讨论,分别是基于传统光学的传统诊断技术(如纹影法、双色法等)和基于激光的先进诊断技术(如粒子图像测速法、激光诱导荧光法等)。光学诊断技术可在多尺度下测量缸内温度、物质浓度、液滴粒径等参数,为准确评估发动机喷油、蒸发、燃烧过程提供试验依据。更重要的是,光学诊断技术为更加深入理解高温高压环境下流动、燃烧的物理/化学机理提供了可能性,为开发高功率、高能效、低排放的先进发动机提供可靠的试验手段,同时为研究人员未来开展基础试验研究、更加深入地理解发动机工作过程提供指导。Abstract: The Internal Combustion engine (IC engine) is one of the most widely applied power machines in modern industry. Investigating the mechanisms of and developing control strategies for IC engines are of practical importance and give rise to interesting scientific issues, as the fuel penetration, evaporation and ignition inside the engine can tremendously affect the structure reliability, power efficiency and pollutant generation. In recent years, lots of efforts have been performed to achieve deeper understanding of the working processes of IC engines by applying experimental optical diagnostic techniques in engine-like laboratory platforms. This review starts with introducing the engine-like platforms (e.g. Constant Volume Combustion Bomb(CVCB), Rapid Compression Machine(RCM), optical engine, etc.) developed to experimentally simulate the practical working processes of practical IC engines. Moreover, multiple advanced optical diagnostic techniques are discussed, including their basic principles and particular applications for the study of detailed processes in IC engines. Specifically, two categories of optical diagnostic techniques are respectively discussed, including the traditional diagnostic techniques based on conventional optics (e.g. schlieren, Two Color Method, etc), and the laser-based diagnostic techniques (e.g. Particle Image Velocimetry, Laser Induced Fluorescence, etc). These techniques offer advantages to examine the spraying, evaporation and combustion processes of the IC engines by measuring the temperature, concentrations, droplet sizes and other valuable characteristics with multi-scale resolution. Furthermore, the diagnostic techniques enable deeper insights into the nature of the flow/combustion under high ambient pressure and temperature, which benefits us from understanding the physical and chemical mechanisms of engine processes in both macro and micro scales. This brief review is intended to be beneficial for both researchers and engineers to analyze the current shortcomings and limitations of the IC engines, and to design the state-of-the-art IC engines with better power performance, energy efficiency and pollutant reduction. Besides, the review paper is also intended to provide a guideline for researchers to conduct further fundamental experiments in IC engines to investigate the flow and combustion mechanisms.
-
Key words:
- Internal Combustion engine (IC engine) /
- optical diagnostics /
- visualization /
- spray /
- combustion /
- Constant Volume Combustion Bomb (CVCB) /
- Rapid Compression Machine (RCM) /
- optical engine /
- schlieren /
- Two Color Method /
- Light Extinction Method (LEM) /
- Refractive Index Matching /
- Particle Image Velocimetry (PIV) /
- Laser Induced Fluorescence (LIF) /
- Laser Induced Incandescence (LII) /
- Phase Doppler Particle Analyzer (PDPA)
-
图 63 典型双平面立体PIV试验设置(1、2、3、4为相机,5为镜头,6为全反射镜,7为偏振分光镜,8为遮挡物)[183]
Figure 63. Schematic setup of Dual-plane Stereo-PIV (1, 2, 3 and 4 for different cameras, 5 for lenses, 6 for reflective mirror, 7 for polarized beam splitter, and 8 for blocker)
表 1 典型容弹特征参数对比
Table 1. Comparison of typical parameters of constant volume combustion bomb characteristics
表 2 典型的快速压缩机形式
Table 2. The typical models of rapid compression machine
单位 驱动方式 活塞运动规律 燃烧室形状 压缩比调节方式 可视化 视窗位置 可视区域 清华大学[84] 气压-活塞直连 压缩-定容 圆形 余隙高度 燃烧室端盖、侧壁 全视场 密歇根大学[85] 气压-飞行活塞 压缩-定容 圆形 余隙高度 燃烧室端盖 全视场 Pprime研究所[86] 气压-凸轮 压缩-定容 方形 余隙高度 燃烧室端盖、侧壁 全视场 大分大学[87] 气压-凸轮 压缩-膨胀 圆形 余隙高度 燃烧室端盖 全视场 卡尔斯鲁厄理工学院[63] 气压-曲柄连杆机构 压缩-膨胀 圆形 挡块位置 燃烧室端盖 全视场 同志社大学[71] 曲柄连杆机构 压缩-膨胀 圆形 余隙高度 燃烧室端盖 全视场 慕尼黑工业大学[69] 气压-活塞嵌套 压缩-膨胀 圆形 活塞行程 活塞 部分视场 表 3 典型光学发动机特征参数对比
Table 3. Comparison of typical parameters of optical engines
可见光波长 不可见光波长 燃料/火焰种类 1.39 0.95(λ>0.8 μm) 稳定明亮火焰 1.38 0.91~0.97(λ=2~4 μm) 柴油机碳烟 1.39 - 柴油机碳烟 - 0.89, 1.04(λ=1~7 μm) 乙酸戊酯 - 0.77 航空煤油 - 0.94, 0.95 苯 - 0.93 蜡烛 - 0.96, 1.14, 1.25 炉膛火焰 - 1.06 石油 - 1.00 丙烷 - 0.91+0.28lnλ 多种燃料 1.43 - 丙酮 1.39 - 乙酸戊酯 1.29 - 煤气/空气 1.23 - 苯 1.14 - 硝化纤维 0.66~0.75 - 乙炔/空气 表 5 油膜测试方法特点对比
Table 5. Comparison of fuel film test methods
测试方法 原理 优点 缺点 测量范围 全反射法[158] 点光源从油膜与透明介质的底部照射,光线在油膜上表面发生全反射,在底部形成光圈。通过标定光圈半径与油膜厚度的关系计算油膜厚度。 试验系统简单。 光线边缘不易确定,液体与壁面折射率存在误差,试验不确定性较高,时间分辨率低。 0~1000 μm 干涉法[159-160] 相干光经过不同厚度油膜时,由于光程差不同产生明暗相间的干涉条纹,根据条纹间距计算油膜厚度。 对油膜无影响,精度高。 单点测量,时间分辨率低。 0~1000 μm 激光诱导荧光法[161] 在燃油中加入示踪剂,在激光的照射下发出荧光信号。通过标定荧光信号强度与油膜厚度的关系计算油膜厚度。 可进行点测量和二维平面测量,精度较高。 示踪剂和表征燃料蒸发特性有差异,并且很难反映出实际燃料中、重组分的油膜生成特性,时间分辨率较低。 0~60 μm 折射率匹配法[162] 光照射在石英玻璃粗糙的上表面时,透射光发生漫反射。当油膜沉积在石英玻璃上,部分透射光直接穿过油膜,漫反射光强降低。标定光强减弱程度与油膜厚度关系,计算油膜厚度。 时间分辨率高,结果精度好,并可在光学发动机中进行试验。 金属活塞由石英替代,对传热有影响。 0~5 μm 光漫反射法[170 光线倾斜照射在粗糙金属表面,发生漫反射。当光线照射区域存在液体时,光在液体表面发生镜面反射,漫反射的光减弱。标定光强减弱程度与油膜厚度的关系,计算油膜厚度。 采用金属表面,与真实燃油附壁过程相似。 试验结果处理复杂,需进行透视变换。 0~10 μm 表 6 各种PIV测试技术对比
Table 6. Comparison of different PIV techniques
测试方法 原理 优点 缺点 测量范围 传统PIV [172] 利用极短时间内连续拍摄的2张粒子在空间中的分布图像,将粒子图像划分为若干查询窗口,然后采用互相关算法(Cross-correlation),计算各查询窗口内所有颗粒作为整体的位移大小和方向。 应用成熟、结果可靠。 引起误差的因素较多,实验人员经验要求较高,仅能测量平面速度分布。 2D2C* 立体PIV[180] 使用与传统PIV试验设置相同的激光光路,将垂直激光平面的单一相机更换为与激光平面成不同夹角的双相机组,通过相机组成像的对应关系,可计算垂直于激光平面方向的速度分量。 在传统PIV基础上,额外测得垂直于平面的速度分量。 只能测量单一平面的速度分布。 2D3C 双平面立体PIV[181] 在立体PIV基础上,额外添加1组相机,同时产生互相平行、距离接近的2个激光平面。2组相机均采用立体PIV方法分别测量2个平面的速度分布,进而计算得到两平面间的涡量场分布。 可获得垂直和平行于两平面方向上的涡量场分布,具有一定三维空间分辨率。 试验光路设置复杂,相机数量多,三维分辨能力不完全(仅能测量2个相邻平面)。 3D3C 层析PIV[182] 使用多个相机,在空间中各不同方位对流场进行同步拍照,获得颗粒光学信号的二维投影,再利用层析算法重构颗粒群的三维分布,确定各颗粒的空间位置。再划分三维查询窗口,采用三维互相关算法获得各窗口的速度大小和方向。 具备完全的三维空间分辨能力,可获得全流场空间内各位置速度的空间分布。 需要较强激光光源和较多相机,数据处理速度较慢,计算资源消耗大,层析重构引入额外误差。 3D3C 全息PIV[193] 将入射光与相机光轴方向重合,入射光经流场颗粒产生干涉现象,进而在相机成像平面上产生干涉条纹。利用不同空间位置的颗粒对应的干涉条纹不同的原理,计算颗粒的空间位置和速度信息。 具备完全的三维空间分辨能力,可获得全流场空间内各位置速度的空间分布。 数据处理速度较慢,计算资源消耗大,对示踪粒子大小和通光性有要求。 3D3C 彩虹PIV[194] 将白光光源进行色散,并通过平行光滤镜产生由红到紫的多组连续激光平面,构成体激光照射流场三维区域,散射信号通过干涉光学元件后,同时聚焦在彩色相机的成像平面。后期处理时,对不同颜色粒子的信号进行分离,做传统二维PIV处理即可获得垂直入射光方向上不同位置的流场速度信息。 具备完全的三维空间分辨能力,与其他3D PIV技术相比计算速度快。 试验光路设置较为复杂,且示踪粒子不能有自发光,在燃烧反应流中测量受限,仅能获得平面速度分布。 3D2C *注:D为空间维度,C为速度分量个数 表 7 典型激光和荧光物质的组合
Table 7. Typical laser and tracer combinations
分类 荧光物质 常用激发激光波长/nm 荧光信号采集波段/nm 示例文献 备注 混合气 丙酮 248
266
308300~550
300~450
350~550[201-203]
[204]
[205]3-戊酮 248
266
276>320
350~550
>305
(Schott WG305)[206]
[207]
[208]甲苯 248
266330~550
265~330[209]
[210]对二甲苯 248 270~330 [202] 间三甲苯 248 270~350 [211] 2, 3-丁二酮 355 >420(Schott GG305) [212] 喷雾 三乙基胺
(TEA)+苯248 气270(荧光峰值波长)
液350(荧光峰值波长)[213] 四甲基对苯二氨
(TMPD) +萘308 气390(荧光峰值波长)
液480(荧光峰值波长)[31, 214] 2, 6-二乙基-4-甲基苯胺
(DMEA) +氟苯(FB)266 气279~299
液330~350[215] 三乙基胺
(TEA) +氟苯(FB)266 气285~295
液350(中心波长)[216] 若丹明B 532 >550 [217-218] 若丹明6G 532 560(荧光峰值波长) [219] 燃烧产物 OH 283 303~313 [220] 甲醛 355 380~460 [208, 221] NO 223~225 230~250 [222] 多环芳烃 266 A1: 280(中心波长)
A2: 330(中心波长)
A3: 360(中心波长)
A4: 400(中心波长)[223]
[224]
[225]
[226]CO 230.1 484(中心波长) [200] 双光子 CH 434.8 430.2(中心波长) [227-228] 表 8 部分示踪剂特性
Table 8. Characteristics of typical tracers
示踪剂 沸点/℃ 吸收波长/nm 发射波长/nm 丙醛 49 220~340 300~550 丙酮 56 220~340 350~550 正丁醛 75 225~345 300~550 2-丁酮 80 220~335 330~360 苯 80 230~270 265~325 2, 3-丁二酮 88 220~480 440~510 3-戊酮 102 220~330 330~600 甲苯 111 225~275 270~330 间三甲苯 168 220~285 270~350 表 9 LII测试系统参数总结
Table 9. Comparison of typical parameters of LII measurement system
单位 激光波长/nm 激光能量 片光高度×厚度/(mm×mm) 探测波长/nm 曝光时间/ns 北京理工大学 532 220 mJ/cm2 50×0.80 410~440、575~605 20 清华大学 532 280 mJ/pulse 50×1.00 385~435 20 天津大学 532 280 mJ/pulse 40×0.80 445~455、645~655 50 德国亚琛工业大学[274] 532 1000 mJ/cm2 40×0.30 380~450 - 法国奥尔良大学[277] 1064 130 mJ/cm2 38×0.63 400~450 20 西班牙瓦伦西亚大学[278] 1064 2870 mJ/cm2 45×0.35 ≤400 50 意大利国立研究院[279] 1064 416 mJ/cm2 10×0.50 495~505、642.5~651.5 3 美国桑迪亚国家实验室[280] 1064 250 mJ/pulse 12×0.50 385~450 275 表 10 发动机常用光学诊断时空分辨能力和适用范围
Table 10. Comparison of spatial-temporal resolution and application scope of commonly used optical diagnostic techniques on engines
发动机常用光学诊断技术 典型应用 空间分辨能力 时间分辨能力 纹影法 燃油喷射宏观特性、火焰传播过程 二维视场累积 较高(取决于相机采样频率) 双色法 燃烧温度场、碳烟浓度场 二维视场累积 较高(取决于相机采样频率) 消光法 碳烟浓度 一维累积
二维平面/二维视场累积较低(取决于照明光源频率或探测器采样频率)
较高(取决于相机采样频率)折射率匹配法 附壁油膜厚度分布 二维平面 较高(取决于相机采样频率) 粒子图像测速法 缸内气流运动和燃油喷射速度场 二维平面/三维 较高(取决于激光/相机采样频率) 平面激光诱导荧光法 喷射、混合和燃烧中间产物 二维平面 较高(取决于激光/相机采样频率) 平面激光诱导炽光法 碳烟浓度和粒径 二维平面 较高(取决于激光/相机采样频率) 相位多普勒粒子测试 燃油颗粒速度和粒径 单点 高(取决于激光/信号接收器采样频率) -
[1] 刘永长.内燃机原理[M].武汉:华中科技大学出版社, 2001. [2] 周龙保.内燃机学[M].北京:机械工业出版社, 1999. [3] YANG Q, LIU Z C, HOU X H, et al. Measurements of laminar flame speeds and flame instability analysis of E30-air premixed flames at elevated temperatures and pressures[J]. Fuel, 2020, 259:116223. https://www.sciencedirect.com/science/article/pii/S0016236113004511 [4] HE X, HOU X H, YANG Q, et al. Study of laminar combustion characteristics of gasoline surrogate fuel-hydrogen-air premixed flames[J]. International Journal of Hydrogen Energy, 2019, 44(26):13910-13922. http://epubs.surrey.ac.uk/852320/ [5] JIANG Y Z, XU H M, MA X, et al. Laminar burning characteristics of 2-MTHF compared with ethanol and isooctane[J]. Fuel, 2017, 190:10-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa6b73df1d0183d13aaee75ddc2939a3 [6] VERHELST S, WOOLLEY R, LAWES M, et al. Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions[J]. Proceedings of the Combustion Institute, 2005, 30(1):209-216. doi: 10.1016-j.proci.2004.07.042/ [7] MANNAA O, MANSOUR M S, ROBERTS W L, et al. Influence of ethanol and exhaust gas recirculation on laminar burning behaviors of fuels for advanced combustion engines (FACE-C) gasoline and its surrogate[J]. Energy & Fuels, 2017, 31(12):14104-14115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68e65282ea01c9bd651464bab1ec67b5 [8] TANG C L, HE J J, HUANG Z H, et al. Measurements of laminar burning velocities and Markstein lengths of propane-hydrogen-air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(23):7274-7285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=19e4ec719e8db9dd275576997346164e [9] LI Q Q, HU E J, CHENG Y, et al. Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures[J]. Fuel, 2013, 112:263-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=855b9899bf92c332791d490b5dcd7b9c [10] HU E J, XU Z H, GAO Z H, et al. Experimental and numerical study on laminar burning velocity of gasoline and gasoline surrogates[J]. Fuel, 2019, 256:115933. https://www.sciencedirect.com/science/article/pii/S0016236119312852 [11] SUN W Y, WESTBROOK G K, LAW C K. Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3(POMDME3) flames:an experimental and modeling study[J]. Proceedings of the Combustion Institute, 2017, 36(1):1269-1278. doi: 10.1016/j.proci.2016.05.058 [12] ZHONG B J, PENG H S, ZHENG D. The effect of different class of hydrocarbons on laminar flame speeds of three C7 fuels[J]. Fuel, 2018, 225:225-229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd0ae1ae841e048fc5f4391676bcee23 [13] ZHANG Z H, ZHU S H, LIANG J J, et al. Experimental and kinetic studies of premixed laminar flame of acetone-butanol-ethanol (ABE)/air[J]. Fuel, 2018, 211:95-101. https://www.sciencedirect.com/science/article/pii/S0016236117311717 [14] LAW C K, JOMAAS G, BECHTOLD J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures:theory and experiment[J]. Proceedings of the Combustion Institute, 2005, 30(1):159-167. http://www.sciencedirect.com/science/article/pii/S0082078404003200 [15] VU T M, PARK J, KWON O B, et al. Effects of hydrocarbon addition on cellular instabilities in expanding syngas-air spherical premixed flames[J]. International Journal of Hydrogen Energy, 2009, 34(16):6961-6969. https://www.sciencedirect.com/science/article/pii/S0360319909009689 [16] VU T M, PARK J, KWON O B, et al. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames[J]. International Journal of Hydrogen Energy, 2010, 35(8):3868-3880. https://www.sciencedirect.com/science/article/pii/S036031991000162X [17] 王鹏.基于定容燃烧弹的湍流火焰燃烧分析[D].北京: 北京交通大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10004-1012357168.htmWANG P. Analysis of turbulent combustion flame based on constant volume combustion chamber[D]. Beijing: Beijing Jiaotong University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10004-1012357168.htm [18] 姜延欢, 李国岫, 孙作宇, 等.湍流强度对CH4/H2预混火焰结构特性的影响[J].燃烧科学与技术, 2017, 23(6):505-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201706005JIANG Y H, LI G X, SUN Z Y, et al. Effect of turbulence intensity on structural characteristics of CH4/H2 premixed flame[J]. Journal of Combustion Science and Technology, 2017, 23(6):505-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201706005 [19] 赵浩然.合成气高压强湍流传播火焰实验研究[C]//中国工程热物理学会燃烧学学术年会论文集. 2019. [20] TSE S D, ZHU D L, LAW C K. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[J]. Proceedings of the Combustion Institute, 2000, 28(2):1793-1800. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC028008525 [21] TSE S D, ZHU D L, LAW C K. Optically accessible high-pressure combustion apparatus[J]. Review of Scientific Instruments, 2004, 75(1):233-239. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022361588/ [22] WANG G Q, LI Y Y, YUAN W H, et al. Investigation on laminar burning velocities of benzene, toluene and ethylbenzene up to 20 atm[J]. Combustion and Flame, 2017, 184:312-323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0163adede2bed6343a95b792b55aa24a [23] WANG G Q, LI Y Y, LI L, et al. Experimental and theoretical investigation on cellular instability of methanol/air flames[J]. Fuel, 2018, 225:95-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebda631b4b469b25de060d856d73459b [24] WANG G Q, LI Y Y, YUAN W H, et al. Investigation on laminar flame propagation of n-butanol/air and n-butanol/O2/He mixtures at pressures up to 20 atm[J]. Combustion and Flame, 2018, 191:368-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cad5d44502bb3e49f87a78fe1ca0d295 [25] HIGGINS B, SIEBERS D L, ARADI A A. Diesel-spray ignition and premixed-burn behavior[J]. SAE transactions, 2000, 109(3):961-984. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026930448/ [26] PICKETT L M, GENZALE C L, BRUNEAUX G, et al. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities[J]. SAE International Journal of Engines, 2010, 3(2):156-181. doi: 10.1097-SHK.0b013e3181ab6359/ [27] SIEBERS D L. Liquid-phase fuel penetration in diesel sprays[J]. SAE transactions, 1998, 107(3):1205-1227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dcbc2447795b2573c34512c6d30e71f [28] FLYNN P F, DURRETT R P, HUNTER G L, et al. Diesel combustion:an integrated view combining laser diagnostics, chemical kinetics, and empirical validation[J]. SAE transactions, 1999, 108(3):587-600. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0210691803/ [29] 苏万华, 毛立伟, 谢腾飞, 等.柴油喷雾结构和特性的定量研究[J].工程热物理学报, 2011, 32(6):1047-1052. http://d.old.wanfangdata.com.cn/Thesis/D286123SU W H, MAO L W, XIE T F, et al. Quantitative study of diesel spray structure and characteristics[J]. Journal of Engineering Thermophysics, 2011, 32(6):1047-1052. http://d.old.wanfangdata.com.cn/Thesis/D286123 [30] 孙田.复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用[D].天津: 天津大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266300.htmSUN T. Development and application of quantitative calibration method on the diesel sprays characteristics using Planar Laser Induced Exciplex Fluorescence technique[D]. Tianjin: Tianjin University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266300.htm [31] 孙田, 苏万华, 郭红松.复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用Ⅰ:燃油喷雾当量比定量标定方法[J].内燃机学报, 2010, 28(1):1-9. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201001000.htmSUN T, SU W H, GUO H S. Development of quantitative calibration method for Planar Laser Induced Exciplex Fluorescence technique and application on the diesel spray characteristics Ⅰ:Study of quantitative calibration method for fuel spray equivalence ratio[J]. Transactions of Csice, 2010, 28(1):1-9. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201001000.htm [32] 郭红松, 苏万华, 毛立伟, 等.利用复合激光诱导荧光法对气相柴油喷雾温度场和浓度场的定量标定[J].燃烧科学与技术, 2010, 16(2):123-127. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201002005GUO H S, SU W H, MAO L W, et al. Quantitative calibration of temperature and concentration of vapor phase spray using planar laser induced exciplex fluorescence technique[J]. Journal of Combustion Science and Technology, 2010, 16(2):123-127. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201002005 [33] 郭红松.使用PLIEF技术对重型柴油机相似环境条件下柴油喷雾结构及其浓度场的定量研究[D].天津: 天津大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-2010209147.htmGUO H S. Quantitative study of structure and concentration of diesel spray in heavy duty diesel engine like conditions by PLIEF technique[D]. Tianjin: Tianjin University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-2010209147.htm [34] 肖国炜.超临界环境下液态碳氢燃料的蒸发和喷雾特性研究[D].北京: 清华大学, 2019.XIAO G W. On the evaporation and spray characteristics of liquid hydrocarbon fuels in supercritical environments[D]. Beijing: Tsinghua University, 2019. [35] 邓鹏, 黄荣华, 张永林, 等.一种预混燃烧加热式定容燃烧弹的研发[J].华中科技大学学报(自然科学版), 2013, 41(8):121-127. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201308025DENG P, HUANG R H, ZHANG Y L, et al. Development of a constant volume combustion bomb heated by premixed burning[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2013, 41(8):121-127. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201308025 [36] LI F, LEE C F, WU H, et al. An optical investigation on spray macroscopic characteristics of ducted fuel injection[J]. Experimental Thermal and Fluid Science, 2019, 109:109918. doi: 10.1016/j.expthermflusci.2019.109918 [37] MEIJER M, SOMERS B, JOHNSON J, et al. Engine combustion network (ECN):characterization and comparison of boundary conditions for different combustion vessels[J]. Atomization and Sprays, 2012, 22(9):777-806. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228833736/ [38] TAGLIANTE F, MALBEC L M, BRUNEAUX G, et al. Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition[J]. Combustion and Flame, 2018, 197:215-226. https://www.sciencedirect.com/science/article/abs/pii/S0010218018303535 [39] CUNG K, MOIZ A, JOHNSON J, et al. Spray-combustion interaction mechanism of multiple-injection under diesel engine conditions[J]. Proceedings of the Combustion Institute, 2015, 35(3):3061-3068. https://www.sciencedirect.com/science/article/pii/S1540748914003642 [40] 何旭, 郑亮, 赵陆明, 等.生物柴油喷雾、着火和燃烧特性试验研究[J].内燃机工程, 2012, 33(5):41-45. http://d.old.wanfangdata.com.cn/Conference/7457842HE X, ZHENG L, ZHAO L M, et al. Experimental research on spray, ignition and combustion characteristics of biodiesel blend[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(5):41-45. http://d.old.wanfangdata.com.cn/Conference/7457842 [41] ZHENG L, MA X, WANG Z, et al. An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline-diesel blends in a constant volume vessel[J]. Fuel, 2015, 139:365-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fa1f4d175dbc7e9fe37a9e99bc1c51f [42] XUAN T M, CAO J W, HE Z X, et al. A study of soot quantification in diesel flame with hydrogenated catalytic biodiesel in a constant volume combustion chamber[J]. Energy, 2018, 145:691-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=abb3fb1605bb83b31af313b24b9836d4 [43] ZHONG W J, TAMILSELVAN P, WANG Q, et al. Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions[J]. Energy, 2018, 153:349-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f9d0791729ec170a19f3e6d654ec1d2 [44] XIA J, HUANG Z, XU L L, et al. Experimental study on spray and atomization characteristics under subcritical, transcritical and supercritical conditions of marine diesel engine[J]. Energy Conversion and Management, 2019, 195:958-971. doi: 10.1016/j.enconman.2019.05.080 [45] CHEN R, NISHIDA K, SHI B L. Quantitative investigation on the spray mixture formation for ethanol-gasoline blends via UV-Vis dual-wavelength laser absorption scattering (LAS) technique[J]. Fuel, 2019, 242:425-437. https://www.sciencedirect.com/science/article/pii/S0016236119300626 [46] PAYRI R, SALVADOR F J, MANIN J, et al. Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector[J]. Applied Energy, 2016, 162:541-550. https://www.sciencedirect.com/science/article/abs/pii/S0306261915013549 [47] PAYRI R, GIMENO J, BARDI M, et al. Study liquid length penetration results obtained with a direct acting piezo electric injector[J]. Applied Energy, 2013, 106:152-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1324d50a921fb98782c0d4e8b3a9d56 [48] BENAJES J, PAYRI R, BARDI M, et al. Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector[J]. Applied Thermal Engineering, 2013, 58(1-2):554-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d34773cfbe027f48fe8fae43c72648b [49] DU C J, ANDERSSON M, ANDERSSON S B. The influence of ethanol blending in diesel fuel on the spray and spray combustion characteristics[J]. SAE International Journal of Fuels and Lubricants, 2014, 7(3):823-832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=904133fa63529c110679ad635eb8bc93 [50] VOGEL T, WENSING M, LEIPERTZ A, et al. Influence of the fuel quantity on the spray formation and ignition under current engine relevant conditions[R]. SAE Technical Paper 2011-01-1928, 2011. [51] VOGEL T, RIESS S, FLUEGEL A, et al. Soot formation of different diesel-fuels investigated by chemical luminescence and laser induced incandescence[R]. SAE Technical Paper 2013-01-2667, 2013. [52] 刘波.汽柴油混合燃料着火及燃烧特性试验研究[D].北京: 北京理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10007-1020708993.htmLIU B. Experimental investigation on the ignition and combustion characteristics of dieseline[D]. Beijing: Beijing Institute of Technology, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10007-1020708993.htm [53] 荣美霞.柴油喷雾与着火特性试验研究[D].北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030147.htmRONG M X. Experimental investigation on the spray and ignition characteristics of diesel spray[D]. Beijing: Beijing Institute of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030147.htm [54] 马玉坡.低温环境下柴油喷雾与燃烧特性试验研究[D].北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015801430.htmMA Y P. Experimental study on diesel spray and combustion characteristics under low temperature condition[D]. Beijing: Beijing Institute of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015801430.htm [55] GOLDSBOROUGH S S, HOCHGREB S, VANHOVE G, et al. Advances in rapid compression machine studies of low-and intermediate-temperature autoignition phenomena[J]. Progress in Energy and Combustion Science, 2017, 63:1-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c47208e3821b55bf9e1e572a1c75dcd [56] DI H S, HE X, ZHANG P, et al. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane[J]. Combustion and Flame, 2014, 161(10):2531-2538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d80ccbed6929027a4caec30a1e57e05 [57] PÖSCHL M, SATTELMAYER T. Influence of temperature inhomogeneities on knocking combustion[J]. Combustion and Flame, 2008, 153(4):562-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1dbc80841188d97b4b6204f143cee329 [58] WU Y T, YANG M, TANG C L, et al. Promoting "adiabatic core" approximation in a rapid compression machine by an optimized creviced piston design[J]. Fuel, 2019, 251:328-340. https://www.sciencedirect.com/science/article/pii/S001623611930585X [59] PAN J Y, HU Z, WEI H Q, et al. Understanding strong knocking mechanism through high-strength optical rapid compression machines[J]. Combustion and Flame, 2019, 202:1-15. https://www.sciencedirect.com/science/article/abs/pii/S0010218019300148 [60] SHI Z C, ZHANG H G, LU H T, et al. Autoignition of DME/H2 mixtures in a rapid compression machine under low-to-medium temperature Ranges[J]. Fuel, 2017, 194:50-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=527c50c7f80ee685a04ec0cc9281f853 [61] DONOVAN M T, HE X, ZIGLER B T, et al. Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena[J]. Combustion and Flame, 2004, 137(3):351-365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1eafc895d45d71761cbc8592bb820e8d [62] MITTAL G, SUNG C J. A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures[J]. Combustion Science and Technology, 2007, 179(3):497-530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102200600671898 [63] WERLER M, CANCINO L R, SCHIESSL R, et al. Ignition delay times of diethyl ether measured in a high-pressure shock tube and a rapid compression machine[J]. Proceedings of the Combustion Institute, 2015, 35(1):259-266. doi: 10.1016/j.proci.2014.06.143 [64] YOUSEFIAN S, GAUTHIER F, MORANGUERRERO A, et al. Simplified approach to the prediction and analysis of temperature inhomogeneity in rapid compression machines[J]. Energy & Fuels, 2015, 29(12):8216-8225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ecdf3c02d47d61671f776cb704b8f0a1 [65] BOURGEOIS N, GOLDSBOROUGH S S, JEANMART H, et al. CFD simulations of Rapid Compression Machines using detailed chemistry:Evaluation of the 'crevice containment' concept[J]. Combustion and Flame, 2018, 189:225-239. https://www.sciencedirect.com/science/article/pii/S0010218017304303 [66] CLARKSON J, GRIFFITHS J F, MACNAMARA J P, et al. Temperature fields during the development of combustion in a rapid compression machine[J]. Combustion and Flame, 2001, 125(3):1162-1175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0f44f5d865c64f03eb09f73a6ac62f5 [67] ALLEN C, MITTAL G, SUNG C J, et al. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels[J]. Proceedings of the Combustion Institute, 2011, 33(2):3367-3374. https://experts.illinois.edu/en/publications/an-aerosol-rapid-compression-machine-for-studying-energetic-nanop [68] HIBI T, KOHATA T, TSUMORI Y, et al. Study on knocking intensity under in-cylinder flow field in SI engines using a rapid compression machine[J]. Journal of Thermal Science and Technology, 2013, 8(3):460-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_306615 [69] EISEN S M. Visualisierung der dieselmotorischen Verbrennung in einer schnellen Kompressionsmaschine[D]. Munich: Tech-nical University Munich, 2003. [70] 李冀辉, 汪洋, 徐帅卿, 等.活塞运动规律对点燃式HFPE燃烧过程影响的仿真研究[J].内燃机工程, 2017, 38(6):23-28, 34. http://d.old.wanfangdata.com.cn/Periodical/nrjgc201706004LI J H, WANG Y, XU S Q, et al. Simulative research of impact of piston motion law on spark-ignition hydraulic free piston engine combustion process[J]. Chinese Internal Combustion Engine Engineering, 2017, 38(6):23-28, 34. http://d.old.wanfangdata.com.cn/Periodical/nrjgc201706004 [71] 福地翔一, 増田裕之, 松村恵理子, 等.急速圧縮膨張装置を用いたデイーゼル機関における後燃えの原因究明[J].自動車技術会論文集, 2016, 47(5):1045-1050. [72] WANG Z, QI Y L, HE X, et al. Analysis of pre-ignition to super-knock:Hotspot-induced deflagration to detonation[J]. Fuel, 2015, 144:222-227. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1108.4690 [73] JI W Q, ZHANG P, HE T J, et al. Intermediate species measurement during iso-butanol auto-ignition[J]. Combustion and Flame, 2015, 162(10):3541-3553. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69310b6e0e4bd9712d8a9ca05ec548d9 [74] 常国峰.快速压缩机的开发及其在HCCI燃烧研究中的应用[D].长春: 吉林大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10183-2007018995.htmCHANG G F. The development of rapid compression machine and its application in homogeneous charge compression ignition[D]. Jilin: Jilin University, 2006. http://cdmd.cnki.com.cn/article/cdmd-10183-2007018995.htm [75] 常国峰, 郭英男, 张纪鹏, 等.利用快速压缩机研究辛烷值对HCCI燃烧特性的影响[J].内燃机学报, 2008, 26(4):289-295. http://d.old.wanfangdata.com.cn/Periodical/nrjxb200804001CHANG G F, GUO Y N, ZHANG J P, et al. Study on effect of octane number on combustion characteristics of HCCI combustion using a rapid compression machine[J]. Transactions of Csice, 2008, 26(4):289-295. http://d.old.wanfangdata.com.cn/Periodical/nrjxb200804001 [76] 常国峰, 郭英男, 张纪鹏, 等.用快速压缩机研究乙醇燃料的HCCI燃烧特性[J].燃烧科学与技术, 2008, 14(4):305-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200804004CHANG G F, GUO Y N, ZHANG J P, et al. Combustion characteristics of ethanol HCCI by rapid compression machine[J]. Journal of Combustion Science and Technology, 2008, 14(4):305-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200804004 [77] YU L, WANG S X, WANG W, et al. Exploration of chemical composition effects on the autoignition of two commercial diesels:Rapid compression machine experiments and model simulation[J]. Combustion and Flame, 2019, 204:204-219. https://www.sciencedirect.com/science/article/abs/pii/S0010218019301014 [78] YU L, WU Z Y, QIU Y, et al. Ignition delay times of decalin over low-to-intermediate temperature Ranges:Rapid compression machine measurement and modeling study[J]. Combustion and Flame, 2018, 196:160-173. https://www.sciencedirect.com/science/article/abs/pii/S0010218018302499 [79] LIU H, ZHANG H G, SHI Z C, et al. Performance characterization and auto-ignition performance of a rapid compression machine[J]. Energies, 2014, 7(9):1-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000092573 [80] 刘昊.快速压缩机的开发与实验研究[D].北京: 北京工业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10005-1016701121.htmLIU H. Development and experimental research of a rapid compression machine[D]. Beijing: Beijing University of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10005-1016701121.htm [81] 陈锐, 张鹏飞, 潘家营, 等.丙烷自燃特性及爆震机理的试验研究[J].天津大学学报, 2018, 51(12):1217-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb201812001CHEN R, ZHANG P F, PAN J Y, et al. Experimental study of spontaneous combustion characteristics and knocking mechanism of propane[J]. Journal of Tianjin University, 2018, 51(12):1217-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb201812001 [82] LIU Y, TANG C L, WU Y T, et al. Low temperature ignition delay times measurements of 1, 3, 5-trimethylbenzene by rapid compression machine[J]. Fuel, 2019, 241:637-645. doi: 10.2514/1.44034 [83] YANG M, WU Y T, TANG C L, et al. Auto-ignition behaviors of nitromethane in diluted oxygen in a rapid compression machine:Critical conditions for ignition, ignition delay times measurements, and kinetic modeling interpretation[J]. Journal of Hazardous Materials, 2019, 377:52-61. https://www.sciencedirect.com/science/article/pii/S0304389419305709 [84] QI Y L, WANG Z, WANG J X, et al. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock[J]. Combustion and Flame, 2015, 162(11):4119-4128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c5e12decba4c45e57ba91f3deecec78 [85] ASSANIS D, WAGNON S W, WOOLDRIDGE M S. An experimental study of flame and autoignition interactions of iso-octane and air mixtures[J]. Combustion and Flame, 2015, 162(4):1214-1224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a53e0e5f563c60586038878ed12fe50 [86] BEN HOUIDI M, SOTTON J, BELLENOUE M. Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities:Impact on combustion regimes and negative temperature coefficient behavior[J]. Fuel, 2016, 186:476-495. https://www.sciencedirect.com/science/article/pii/S0016236116308286 [87] TANOUE K, JIMOTO T, KIMURA T, et al. Effect of initial temperature and fuel properties on knock characteristics in a rapid compression and expansion machine[J]. Proceedings of the Combustion Institute, 2017, 36(3):3523-3531. http://www.sciencedirect.com/science/article/pii/S1540748916304254 [88] STROZZI C, SOTTON J, MURA A, et al. Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine[J]. Combustion Science and Technology, 2008, 180(10-11):1829-1857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102200802260656 [89] TANAKA K, ISOBE N, SATO K, et al. Ignition characteristics of 2, 5-dimethylfuran compared with gasoline and ethanol[J]. SAE International Journal of Engines, 2015, 9(1):39-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48c5ed21eb3f08a90146ab0d69355e06 [90] QI Y L, WANG Y D, LI Y F, et al. Auto-ignition characteristics of end-gas in a rapid compression machine under super-knock conditions[J]. Combustion and Flame, 2019, 205:378-388. https://www.sciencedirect.com/science/article/pii/S0010218019301592 [91] FEI S B, WANG Z, QI Y L, et al. Ignition of a single lubricating oil droplet in combustible ambient gaseous mixture under high-temperature and high-pressure conditions[J]. Combustion Science and Technology, 2019, 191(11):2033-2052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2018.1542382 [92] GUIBERT P, KEROMNES A, LEGROS G. An experimental investigation of the turbulence effect on the combustion propagation in a rapid compression machine[J]. Flow, Turbulence and Combustion, 2009, 84(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=785bc5ac03c3f3a46125b6a7f59a11ef [93] SHIOZAKI T, NAKAJIMA H, YOKOTA H, et al. The visualization and its analysis of combustion flame in a DI diesel engine[J]. SAE transactions, 1998, 107(3):131-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=408fffcdbc2c0977efed3aa6d2598c5e [94] MILES P C. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion[C]//Proc of ASME 2014 Internal Combustion Engine Division Fall Technical Conference. 2014. [95] 梁帅, 蒋一洲, 马骁, 等.全视场活塞视窗的图像矫正方法[J].内燃机学报, 2017, 35(1):75-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201701011LIANG S, JIANG Y Z, MA X, et al. Image rectification of full-visible piston crown[J]. Transactions of Csice, 2017, 35(1):75-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201701011 [96] 何旭, 曾威霖, 尚勇, 等.柴油光学发动机的设计及其可视化应用研究[J].内燃机工程, 2014, 35(2):42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc201402007HE X, ZENG W L, SHANG Y, et al. Transparent diesel engine design and its application in visualization research[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(2):42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc201402007 [97] ZHA K, BUSCH S, PARK C, et al. A novel method for correction of temporally-and spatially-variant optical distortion in planar particle image velocimetry[J]. Measurement Science and Technology, 2016, 27(8):085201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=878b67d7d2ac3d31544ffb48de0e44e4 [98] PITCHER G, TURNER J G, PEARSON R J. GEM ternary blends of gasoline, ethanol and methanol: an initial investigation into fuel spray and combustion characteristics in a direct-injected spark-ignition optical engine using mie imaging[R]. SAE Technical Paper 2012-01-1740, 2012. [99] FUYUTO T, MATSUMOTO T, HATTORI Y, et al. A new generation of optically accessible single-cylinder engines for high-speed and high-load combustion analysis[J]. SAE International Journal of Fuels and Lubricants, 2011, 5(1):307-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b39ef621e1b084aa5bebdeb4bc232cd [100] CHEN Y L, LI X R, LI X L, et al. The wall-flow-guided and interferential interactions of the lateral swirl combustion system for improving the fuel/air mixing and combustion performance in DI diesel engines[J]. Energy, 2019, 166:690-700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d72c6a1e5eab2575d91c9da2fb8fabf6 [101] VAN OVERBRVGGEN T, BAHL B, DIERKSHEIDE U, et al. Tomographic particle-image velocimetry in an IC engine[C]//Proc of the 10th International Symposium on Particle Image Velocimetry. 2013. [102] GUO H J, MA X, LI Y F, et al. Effect of flash boiling on microscopic and macroscopic spray characteristics in optical GDI engine[J]. Fuel, 2017, 190:79-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49b434e92b7d90834e2132effef4cbaa [103] TROST J, ZIGAN L, LEIPERTZ A, et al. Fuel concentration imaging inside an optically accessible diesel engine using 1-methylnaphthalene planar laser-induced fluorescence[J]. International Journal of Engine Research, 2014, 15(6):741-750. doi: 10.1177/1468087413515658 [104] ATTAR M A, HERFATMANESH M R, ZHAO H, et al. Experimental investigation of direct injection charge cooling in optical GDI engine using tracer-based PLIF technique[J]. Experimental Thermal and Fluid Science, 2014, 59:96-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b488b4754be9e84dfe5d9400d632cf8d [105] MA X, HE X, WANG J X, et al. Co-evaporative multi-component fuel design for in-cylinder PLIF measurement and application in gasoline direct injection research[J]. Applied Energy, 2011, 88(8):2617-2627. https://core.ac.uk/display/6453188 [106] 张小玉, 刘福水, 何旭, 等.喷油定时对汽/柴油混合燃料燃烧影响的可视化研究[J].内燃机学报, 2014, 32(5):393-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201405002ZHANG X Y, LIU F S, HE X, et al. Visualization on combustion characteristic of gasoline/diesel fuel blends at different injection timings[J]. Transactions of Csice, 2014, 32(5):393-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201405002 [107] 马玉坡, 刘福水, 何旭, 等.进气道喷射乙醇柴油引燃的燃烧特性可视化[J].内燃机学报, 2014, 32(4):296-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201404002MA Y P, LIU F S, HE X, et al. Visualization of combustion characteristics of intake port injected ethanol ignited by diesel fuel[J]. Transactions of Csice, 2014, 32(4):296-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201404002 [108] 靳森嘉, 刘福水, 何旭, 等.后喷时刻对柴油机燃烧影响的可视化研究[J].工程热物理学报, 2014, 35(10):2078-2082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201410041JIN S J, LIU F S, HE X, et al. Visualization on the influence of the post-injection timing on diesel engine combustion[J]. Journal of Engineering Thermophysics, 2014, 35(10):2078-2082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201410041 [109] RONG M X, HE X, LIU H, et al. An optical investigation on the combustion characteristics of gasoline-diesel dual-fuel applications[R]. SAE Technical Paper 2014-01-1310, 2014. [110] 曾威霖, 刘福水, 何旭, 等.可视化研究生物柴油缸内燃烧温度和碳烟特性[J].内燃机学报, 2013, 31(4):296-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201304002ZENG W L, LIU F S, HE X, et al. Visualization study on the in-cylinder combustion temperature and soot characteristics of biodiesel[J]. Transactions of Csice, 2013, 31(4):296-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201304002 [111] MA X, WANG Z, JIANG C Z, et al. An optical study of in-cylinder CH2O and OH chemiluminescence in flame-induced reaction front propagation using high speed imaging[J]. Fuel, 2014, 134:603-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de82034bddca20ea1a8a791cd64e8d63 [112] LIU H F, TANG Q L, YANG Z, et al. A comparative study on partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) in an optical engine[J]. Proceedings of the Combustion Institute, 2019, 37(4):4759-4766. doi: 10.1016/j.proci.2018.06.004 [113] 唐青龙, 耿超, 李明坤, 等.激光诱导荧光法测量内燃机双燃料燃烧过程中的甲醛和羟基[J].物理化学学报, 2015, 31(12):2269-2277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201512004TANG Q L, GENG C, LI M K, et al. Laser-induced fluorescence measurements of formaldehyde and OH radicals in dual-fuel combustion process in engine[J]. Acta Physico-Chimica Sinica, 2015, 31(12):2269-2277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201512004 [114] MILES P C, COLLIN R, HILDINGSSON L, et al. Combined measurements of flow structure, partially oxidized fuel, and soot in a high-speed, direct-injection diesel engine[J]. Proceedings of the Combustion Institute, 2007, 31(2):2963-2970. https://www.sciencedirect.com/science/article/pii/S1540748906002409 [115] 朱德忠.热物理激光测试技术[M].北京:科学出版社, 1990. [116] 安新亮, 何旭, 王丽雯, 等.应用高速纹影法对汽油机燃烧过程的研究[J].内燃机工程, 2007, 28(2):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc200702001AN X L, HE X, WANG L W, et al. Research on the combustion process of gasoline engine by high-speed schlieren method[J]. Chinese Internal Combustion Engine Engineering, 2007, 28(2):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc200702001 [117] FULLER M E, GOLDSMITH C F. Shock tube laser schlieren study of the pyrolysis of isopropyl nitrate[J]. The Journal of Physical Chemistry A, 2019, 123(28):5866-5876. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90528fc2e03118e4e79a8701b065cd71 [118] RAFFEL M. Background-oriented schlieren (BOS) techniques[J]. Experiments in Fluids, 2015, 56(3):60. doi: 10.1007/s00348-015-1927-5 [119] SETTLES G S, HARGATHER M. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology, 2017, 28(4):042001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9325196 [120] JONASSEN D R, SETTLES G S, TRONOSKY M D. Schlieren "PIV" for turbulent flows[J]. Optics and Lasers in Engineering, 2006, 44(3-4):190-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7be328469d268a99da06c7e4520a7c5f [121] 何旭, 刘海, 曾威霖, 等.燃油温度和喷射压力对葵花籽油与柴油喷雾特性的影响[J].农业工程学报, 2014, 30(15):75-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201415011HE X, LIU H, ZENG W L, et al. Effect of fuel temperature and injection pressure on spray characteristics of sunflower oil and diesel[J]. Transactions of the CSAE, 2014, 30(15):75-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201415011 [122] GUO H J, LI Y F, SHEN Y T, et al. Characterizing propane flash boiling spray from multi-Hole GDI injector[R]. SAE Technical Paper 2018-01-0278, 2018. [123] HU E J, HUANG Z H, HE J J, et al. Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2009, 34(13):5574-5584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f63bfe11de7bc9d4384a3dc62c69e27 [124] 孟晟, 杨臧健, 王明晓, 等.纹影定量化在火焰温度测量中的应用[J].实验流体力学, 2015, 29(4):65-69. http://www.syltlx.com/CN/abstract/abstract10861.shtmlMENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):65-69. http://www.syltlx.com/CN/abstract/abstract10861.shtml [125] HOTTEL H C, BROUGHTON F P. Determination of true temperature and total radiation from luminous gas flames[J]. Industrial & Engineering Chemistry Analytical Edition, 1932, 4(2):166-175. doi: 10.1021/ac50078a004 [126] GAYDON A G, WOLFHARD H G, FRISTROM R M. Flames:their structure, radiation and temperature[J]. Physics Today, 1971, 24(10):54. doi: 10.1016/0022-460X(72)90510-X [127] ZHAO H. Laser diagnostics and optical measurement techniques in internal combustion engines[M]. Warrendale, PA:SAE International, 2012. [128] MATSUI Y, KAMIMOTO T, MATSUOKA S. A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines[J]. Transactions of the Japan Society of Mechanical Engineers. B, 1979, 45(398):1576-1586. doi: 10.4271/800970 [129] YAN J D, BORMAN G L. Analysis and in-cylinder measurement of particulate radiant emissions and temperature in a direct injection diesel engine[R]. SAE Technical Paper 881315, 1988. [130] KOCK B F, TRIBALET B, SCHULZ C, et al. Two-color time-resolved LII applied to soot particle sizing in the cylinder of a diesel engine[J]. Combustion and Flame, 2006, 147(1-2):79-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e810d9bf6a40cd4d9fafeec7ce5f7a30 [131] MATSUI Y, KAMIMOTO T, MATSUOKA S. A study on the time and space resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method[J]. SAE transactions, 1979, 88:1808-1822. doi: 10.4271/790491 [132] QUAY B, LEE T W, NI T, et al. Spatially resolved measurements of soot volume fraction using laser-induced incandescence[J]. Combustion and Flame, 1994, 97(3-4):384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9b03eab2dea58096230b389d11b3abd [133] NAKASHIMA T, BASAKI M, SAITO K, et al. New concept of a direct injection SI gasoline engine:a study of stratified charge combustion characteristics by radical luminescence measurement[J]. JSAE Review, 2003, 24(1):17-23. https://www.sciencedirect.com/science/article/pii/S0389430402002448 [134] KHATAMI R, LEVENDIS Y A. On the deduction of single coal particle combustion temperature from three-color optical pyrometry[J]. Combustion and Flame, 2011, 158(9):1822-1836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2866ccce7204bf11032ba5aa6f2a7be [135] LEE J, OH H, BAE C. Combustion process of JP-8 and fossil Diesel fuel in a heavy duty diesel engine using two-color thermometry[J]. Fuel, 2012, 102:264-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d885a2b9087a2060c96c822458e15016 [136] MAGNO A, MANCARUSO E, VAGLIECO B M. Experimental investigation in an optically accessible diesel engine of a fouled piezoelectric injector[J]. Energy, 2014, 64:842-852. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68520a6bd84f3837cee9fa54d6b8daec [137] TAPETADO A, DÍAZ-ÁLVAREZ J, MIGUÉLEZ M H, et al. Two-color pyrometer for process temperature measurement during machining[J]. Journal of Lightwave Technology, 2016, 34(4):1380-1386. doi: 10.1109/JLT.2015.2513158 [138] VO C, CHAROENPHONPHANICH C, KARIN P, et al. Effects of variable O2 concentrations and injection pressures on the combustion and emissions characteristics of the petro-diesel and hydrotreated vegetable oil-based fuels under the simulated diesel engine condition[J]. Journal of the Energy Institute, 2018, 91(6):1071-1084. https://www.sciencedirect.com/science/article/pii/S1743967117302490 [139] KRANZ P, KAISER S A. LIF-based imaging of preferential evaporation of a multi-component gasoline surrogate in a direct-injection engine[J]. Proceedings of the Combustion Institute, 2019, 37(2):1365-1372. https://www.sciencedirect.com/science/article/pii/S1540748918304000 [140] 田辛, 何邦全, 王建昕, 等.用双色法研究进气道喷射乙醇柴油引燃时的燃烧过程[J].内燃机学报, 2004, 22(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb200401006TIAN X, HE B Q, WANG J X, et al. Research on the combustion process of ethanol injected in the intake port ignited by diesel fuel by means of two-color method[J]. Transactions of Csice, 2004, 22(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb200401006 [141] 王丽雯, 何旭, 王建昕, 等.用双色法研究汽油机燃烧火焰的温度分布[J].燃烧科学与技术, 2007, 13(4):293-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200704002WANG L W, HE X, WANG J X, et al. Temperature distribution of combustion flame in the gasoline engine by means of two-color method[J]. Journal of Combustion Science and Technology, 2007, 13(4):293-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200704002 [142] 陈亮, 成晓北, 颜方沁, 等.基于改进的详细碳烟模型的柴油燃烧碳烟颗粒物的生成特性[J].燃烧科学与技术, 2013, 19(3):234-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201303007CHEN L, CHENG X B, YAN F Q, et al. Soot formation characteristics in diesel combustion process based on an improved detailed soot model[J]. Journal of Combustion Science and Technology, 2013, 19(3):234-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201303007 [143] 邵力成, 周志军, 吉伟, 等.双色测温法的分色曝光算法改进及验证[J].热力发电, 2018, 47(4):30-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlfd201804006SHAO L C, ZHOU Z J, JI W, et al. Improvement and verification of two-color pyrometry by setting exposure time respectively[J]. Thermal Power Generation, 2018, 47(4):30-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlfd201804006 [144] ZACCANTI G, BRUSCAGLIONI P. Deviation from the lambert-beer law in the transmittance of a light beam through diffusing media:experimental results[J]. Journal of Modern Optics, 1988, 35(2):229-242. doi: 10.1080/09500348814550281 [145] FU Q, SUN W. Mie theory for light scattering by a spherical particle in an absorbing medium[J]. Applied Optics, 2001, 40(9):1354-1361. http://www.opticsinfobase.org/ao/abstract.cfm?id=63786 [146] D'ALESSIO A, DI LORENZO A, BORGHESE A, et al. Study of the soot nucleation zone of rich methane-oxygen flames[J]. Symposium (International) on Combustion, 1977, 16(1):695-708. doi: 10.1016/S0082-0784(77)80364-0 [147] SANTORO R J, SEMERJIAN H G, DOBBINS R A. Soot particle measurements in diffusion flames[J]. Combustion and Flame, 1983, 51:203-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49639af7b0408d8fe5f64f6ee819fe90 [148] WIARTALLA A, BÄCKER H, DVRNHOLZ M. Influence of injection system parameters on spray development combustion and soot formation by optical measurement techniques in a model combustion chamber[J]. SAE transactions, 1995, 104(3):448-461. https://www.sae.org/publications/technical-papers/content/950233/ [149] HENTSCHEL W, RICHTER J U. Time-resolved analysis of soot formation and oxidation in a direct-injection diesel engine for different EGR-rates by an extinction method[J]. SAE transactions, 1995, 104(4):1873-1886. https://www.sae.org/publications/technical-papers/content/952517/ [150] DE FRANCQUEVILLE L, BRUNEAUX G, THIROUARD B. Soot volume fraction measurements in a gasoline direct injection engine by combined laser induced incandescence and laser extinction method[J]. SAE International Journal of Engines, 2010, 3(1):163-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210749560 [151] NAKAKITA K, NAGAOKA M, FUJIKAWA T, et al. Photographic and three dimensional numerical studies of diesel soot formation process[J]. SAE transactions, 1990, 99(3):2132-2144. doi: 10.4271/902081 [152] SNELLING D R, THOMSON K A, SMALLWOOD G J, et al. Two-dimensional imaging of soot volume fraction in laminar diffusion flames[J]. Applied Optics, 1999, 38(12):2478-2485. doi: 10.1364/AO.38.002478 [153] THOMSON K A, JOHNSON M R, SNELLING D R, et al. Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements[J]. Applied Optics, 2008, 47(5):694-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60e387ed398228f6c9f9350567f886eb [154] MANIN J, PICKETT L M, SKEEN S A. Two-color diffused back-illumination imaging as a diagnostic for time-resolved soot measurements in reacting sprays[J]. SAE International Journal of Engines, 2013, 6(4):1908-1921. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1aa30dcf844a70ea7e3fe7268d3f5b69 [155] XU Y, LEE C F F. Investigation of soot formation in diesel combustion using forward illumination light extinction (FILE) technique[R]. SAE Technical Paper 2004-01-1411, 2004. [156] DRAKE M C, FANSLER T D, ROSALIK M E. Quantitative high-speed imaging of piston fuel films in direct-injection engines using a refractive-index-matching technique [C]//Proc of the 15th Annual Conference on Liquid Atomization and Spray Systems. 2002. [157] DRAKE M C, FANSLER T D, SOLOMON A S, et al. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine [J]. SAE transactions, 2003, 112(3): 762-783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026153053 [158] HURLBURT E T, NEWELL T A. Optical measurement of liquid film thickness and wave velocity in liquid film flows [J]. Experiments in Fluids, 1996, 21(5): 357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52485081b6530c97fe573d0ff49844d1 [159] OHYAMA T, ENDOH K, MIKAMI A, et al. Optical interferometry for measuring instantaneous thickness of transparent solid and liquid films [J]. Review of Scientific Instruments, 1988, 59(9): 2018-2022. doi: 10.1063/1.1140018 [160] HAN Y, SHIKAZONO N, KASAGI N. Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter [J]. International Journal of Multiphase Flow, 2011, 37(1): 36-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62fc6df43dba9ff74c1a5fc8c5188039 [161] SCHULZ F, SAMENFINK W, SCHMIDT J, et al. Systematic LIF fuel wall film investigation [J]. Fuel, 2016, 172: 284-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32e1bd2b17c9ba7847a921ae9172c8f8 [162] HE X, LI Y K, SJÖBERG M, et al. Impact of coolant temperature on piston wall-wetting and smoke generation in a stratified-charge DISI engine operated on E30 fuel [J]. Proceedings of the Combustion Institute, 2019, 37(4): 4955-4963. doi: 10.1016/j.proci.2018.07.073 [163] MALIGNE D, BRUNEAUX G. Time-resolved fuel film thickness measurement for direct injection SI engines using refractive index matching [R]. SAE Technical Paper 2011-01-1215, 2011. [164] DING C P, SJÖBERG M, VUILLEUMIER D, et al. Fuel film thickness measurements using refractive index matching in a stratified-charge SI engine operated on E30 and alkylate fuels [J]. Experiments in Fluids, 2018, 59(3): 1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c3fdd3bad898fea244b802ee4acccb6 [165] YANG B, GHANDHI J. Measurement of diesel spray impingement and fuel film characteristics using refractive index matching method [R]. SAE Technical Paper 2007-01-0485, 2007. [166] LUO H L, NISHIDA K, UCHITOMI S, et al. Effect of temperature on fuel adhesion under spray-wall impingement condition [J]. Fuel, 2018, 234: 56-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63475bf94f1420312831bf21233342ce [167] LUO H L, UCHITOMI S, NISHIDA K, et al. Experimental investigation on fuel film formation by spray impingement on flat walls with different surface roughness [J]. Atomization and Sprays, 2017, 27(7): 611-628. doi: 10.1615/AtomizSpr.2017019706 [168] ZHENG Y, XIE X, LAI M C. Measurement and Simulation of DI Spray Impingements and Film Characteristics [C]//Proc of the 12th Triennial International Conference on Liquid Atomization and Spray Systems. 2012. [169] 孔祥东, 骆洪亮, 张琦玮, 等.直喷汽油机喷雾碰壁特性实验研究[J].燕山大学学报, 2017, 41(1): 13-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysdxxb201701002KONG X D, LUO H L, ZHANG Q W, et al. Experimental research on spray and impingement characteristics of direct injection gasoline engine [J]. Journal of Yanshan University, 2017, 41(1): 13-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysdxxb201701002 [170] HENKEL S, BEYRAU F, HARDALUPAS Y, et al. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces [J]. Optics Express, 2016, 24(3): 2542-2561. https://www.ncbi.nlm.nih.gov/pubmed/26906828 [171] RAFFEL M, WILLERT C E, SCARANO F, et al. Techniques for 3D-PIV [M]//RAFFEL M, WILLERT C E, SCARANO F, et al. Particle Image Velocimetry. Cham: Springer Inter-national Publishing, 2018. [172] STANSFIELD P, WIGLEY G, JUSTHAM T, et al. PIV analysis of in-cylinder flow structures over a range of realistic engine speeds [J]. Experiments in Fluids, 2007, 43(1): 135-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f5ed4ca9f516942129181ed2a44bc23a [173] CHWANG A T, YAOTSU WU T. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows [J]. Journal of Fluid Mechanics, 1975, 67(4): 787-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112075000614 [174] GRANT I. Particle image velocimetry: a review [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(1): 55-76. doi: 10.1243/0954406971521665 [175] KOMPENHANS J. Particle Image Velocimetry [J]. Topics in Applied Physics, 2001, 23(4): 331-334. [176] WESTERWEEL J. Fundamentals of digital particle image velocimetry [J]. Measurement Science and Technology, 1997, 8(12): 1379-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da0587abf02ceca7a7bde890f96160b4 [177] PRASAD A K. Stereoscopic particle image velocimetry [J]. Experiments in Fluids, 2000, 29(2): 103-116. doi: 10.1007/s003480000143 [178] 孙柏刚, 冯旺聪, 李向荣, 等. PIV在柴油喷雾测试中的应用[J].车用发动机, 2004(1): 45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200401013SUN B G, FENG W C, LI X R, et al. Application of PIV in diesel spray measurement [J]. Vehicle Engine, 2004(1): 45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200401013 [179] 董明哲, 汪洋, 蒋宁涛. PIV系统测量误差的实验评价及在柴油机喷雾测量上的应用[J].车用发动机, 2005(1): 57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200501015DONG M Z, WANG Y, JIANG N T. An experimental method for evaluating the PIV measure errors and PIV application in diesel spray measurement [J]. Vehicle Engine, 2005(1): 57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200501015 [180] WIENEKE B. Stereo-PIV using self-calibration on particle images [J]. Experiments in Fluids, 2005, 39(2): 267-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9129702fe4e9b51012bf0d2558c6e95d [181] KÄHLER C J, KOMPENHANS J. Fundamentals of multiple plane stereo particle image velocimetry [J]. Experiments in Fluids, 2000, 29(1): S070-S077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=842d2c0f5e9b7bb80d249eb13908c890 [182] ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry [J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z [183] GORDON R, BENDER R, HERMAN G T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography [J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. https://www.sciencedirect.com/science/article/pii/0022519370901098 [184] LI X S, MA L. Capabilities and limitations of 3D flame mea-surements based on computed tomography of chemiluminescence [J]. Combustion and Flame, 2015, 162(3): 642-651. https://www.sciencedirect.com/science/article/pii/S0010218014002673 [185] BAUM E, PETERSON B, SURMANN C, et al. Investigation of the 3D flow field in an IC engine using tomographic PIV [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2903-2910. https://www.sciencedirect.com/science/article/pii/S1540748912002313 [186] TOKAREV M, SHARABORIN D, LOBASOV A, et al. 3D velocity measurements in a premixed flame by tomographic PIV [J]. Measurement Science and Technology, 2015, 26(6): 064001. doi: 10.1088/0957-0233/26/6/064001 [187] ZISKIN I, ADRIAN R. Volume segmentation and ghost particles [C]//Proc of the 64th Annual Meeting of the APS Division of Fluid Dynamics. 2011. [188] NOVARA M, BATENBURG K J, SCARANO F. Motion tracking-enhanced MART for tomographic PIV [J]. Measurement Science and Technology, 2010, 21(3): 035401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b60a86f444e40f808eaa60a9fe6f379 [189] WANG H P, GAO Q, WANG S Z, et al. Error reduction for time-resolved PIV data based on Navier-Stokes equations [J]. Experiments in Fluids, 2018, 59(10): 1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a15f26df9365bae2094ee521625083d [190] WANG Z Y, GAO Q, PAN C, et al. Imaginary particle tracking accelerometry based on time-resolved velocity fields [J]. Experiments in Fluids, 2017, 58(9): 1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5d74880fe1383b5edbf7ba7ee0b1630 [191] WANG Z Y, GAO Q, WANG J J. A triple-exposure color PIV technique for pressure reconstruction [J]. Science China Technological Sciences, 2017, 60(1): 1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ee201701001 [192] BISHOP T E, FAVARO P. The light field camera: extended depth of field, aliasing, and superresolution [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 972-986. https://ieeexplore.ieee.org/abstract/document/5989827/ [193] HINSCH K D. Holographic particle image velocimetry [J]. Measurement Science and Technology, 2002, 13(7): R61-R72. doi: 10.1088/0957-0233/13/7/201 [194] XIONG J H, IDOUGHI R, AGUIRRE-PABLO A A, et al. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging [J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. https://www.researchgate.net/publication/316580493_Rainbow_Particle_Imaging_Velocimetry_for_Dense_3D_Fluid_Velocity_Imaging [195] ECKBRETH A C. Laser diagnostic for combustion temperature and species [M]. Boca Raton, FL, USA : CRC Press, 1996. [196] SCHULZ C, SICK V. Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems [J]. Progress in Energy and Combustion Science, 2005, 31(1): 75-121. http://www.onacademic.com/detail/journal_1000034170755210_f0c9.html [197] WILLIAMS B, EWART P, STONE R, et al. Multi-component quantitative PLIF: robust engineering measurements of cyclic variation in a firing spray-guided gasoline direct injection engine [R]. SAE Technical Paper 2008-01-1073, 2008. [198] ZHAO H, LADOMMATOS N. Engine combustion instrumentation and diagnostics [M]. Warrendale, PA: SAE International, 2001. [199] MUNCH K, KRAMER H, LEIPERTZ A. Investigation of fuel evaporation inside the intake of a SI engine using laser-induced exciplex-fluorescence with a new seed [J]. SAE transactions, 1996, 105(4): 1373-1379. https://www.sae.org/publications/technical-papers/content/961930/ [200] FRANK J H, BARLOW R S. Simultaneous Rayleigh, Raman, and LIF measurements in turbulent premixed methane-air flames [J]. Symposium (International) on Combustion, 1998, 27(1): 759-766. https://www.sciencedirect.com/science/article/pii/S0082078498804700 [201] FUJIKAWA T, HATTORI Y, AKIHAMA K. Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength [R]. SAE Technical Paper 972944, 1997. [202] RUI Z, SICK V. Multi-component fuel imaging in a spray-guided spark-ignition direct-injection engine [R]. SAE Technical Paper 2007-01-1826, 2007. [203] FUJIKAWA T, HATTORI Y, KOIKE M, et al. Quantitative 2-D fuel distribution measurements in a direct-injection gasoline engine using laser-induced fluorescence technique [J]. JSME International Journal Series B, 1999, 42(4): 760-767. https://ui.adsabs.harvard.edu/abs/1999JSMEB..42..760F/abstract [204] DE SERCEY G, HEIKAL M, GOLD M, et al. On the use of laser-induced fluorescence for the measurement of in-cylinder air: fuel ratios [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2002, 216(10): 1017-1029. doi: 10.1243/095440602760400986 [205] HAN S M, CHENG W K. Design and demonstration of a spark ignition engine operating in a stratified-EGR mode [R]. SAE Technical Paper 980122, 1998. [206] RICHTER M, AXELSSON B, ALDÉN M, et al. Investigation of the fuel distribution and the in-cylinder flow field in a stratified charge engine using laser techniques and comparison with CFD-modelling [J]. SAE transactions, 1999, 108(4): 1652-1663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025647784 [207] GHANDHI J B, BRACCO F V. Fuel distribution effects on the combustion of a direct-injection stratified-charge engine [J]. SAE transactions, 1995, 104(3): 905-921. doi: 10.4271/950460 [208] GRAF N, GRONKI J, SCHULZ C, et al. In-cylinder combustion visualization in an auto-igniting gasoline engine using fuel tracer- and formaldehyde-LIF imaging [R]. SAE Technical Paper 2001-01-1924, 2001. [209] SACADURA J C, ROBIN L, DIONNET F, et al. Experimental investigation of an optical direct injection S.I. engine using fuel-air ratio laser induced fluorescence [R]. SAE Technical Paper 2000-01-1794, 2000. [210] Hwang W, Dec J E, Sjoberg M. Fuel stratification for low-load HCCI combustion: performance and fuel-PLIF measurements [R]. SAE Technical Paper 2007-01-4130, 2007. [211] WILLIAMS B, EWART P, WANG X W, et al. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF [J]. Combustion and Flame, 2010, 157(10): 1866-1878. https://www.sciencedirect.com/science/article/pii/S0010218010001707 [212] SMITH J D, SICK V. Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane [J]. Proceedings of the Combustion Institute, 2007, 31(1): 747-755. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/86751/Sick20.pdf;sequence=1 [213] MUNCH K, KRAMER H, LEIPERTZ A. Investigation of fuel evaporation inside the intake of a si engine using laser-induced exciplex-fluorescence with a new seed [J]. SAE transactions, 1996, 105(4): 1373-1379. https://www.sae.org/publications/technical-papers/content/961930/ [214] 孙田, 苏万华, 郭红松.复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用Ⅱ:喷射参数和环境参数对喷雾特性的定量分析[J].内燃机学报, 2010, 28(1): 10-19. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201001001.htmSUN T, SU W H, GUO H S. Development of Quantitative Calibration Method for Planar Laser Induced Exciplex Fluorescence Technique and Application on the Diesel Spray Characteristics Ⅱ: Quantitative analysis the influence of injection and ambient parameters on spray characteristics [J]. Transactions of Csice, 2010, 28(1): 10-19. http://www.cnki.com.cn/Article/CJFDTotal-NRJX201001001.htm [215] ZENG W, XU M, ZHANG Y Y, et al. Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques. Proceedings of the Combustion Institute, 2013, 34(1): 1677-1685. http://www.sciencedirect.com/science/article/pii/S1540748912003537 [216] STYRON J P, KELLY-ZION P L, LEE C F, et al. Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark-ignition engine [J]. SAE tran-sactions, 2000, 109(3): 111-127. doi: 10.4271/2000-01-0243 [217] COOLEN M C J, KIEFT R N, RINDT C C M, et al. Application of 2-D LIF temperature measurements in water using a Nd: YAG laser. Experiments in Fluids, 1999, 27(5): 420-426. doi: 10.1007/s003480050367 [218] LI X, QI P Y, ZHAO T J, et al. LIF study of temporal and spatial fluid mixing in an annular downcomer [J]. Annals of Nuclear Energy, 2019, 126: 220-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7289cb9cceff965f67e5487c774b389b [219] OREA D, VAGHETTO R, NGUYEN T, et al. Experimental measurements of flow mixing in cold leg of a pressurized water reactor [J]. Annals of Nuclear Energy, 2020, 140: 107137. doi: 10.1016/j.anucene.2019.107137 [200] MA X, XU H M, JIANG C Z, et al. Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine [J]. Applied Energy, 2014, 122: 247-260. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65d966611f2aeb681478f21c19cd9db4 [221] COLLIN R, NYGREN J, RICHTER M, et al. Simultaneous OH- and formaldehyde-LIF measurements in an HCCI engine [J]. SAE transactions, 2003, 112(4): 2479-2486. doi: 10.4271/2003-01-3218 [222] BESSLER W G, SCHULZ C. Quantitative multi-line NO-LIF temperature imaging [J]. Applied Physics B, 2004, 78(5): 519-533. doi: 10.1007/s00340-004-1421-x [223] EGERMANN J, SEEGER T, LEIPERTZ A. Application of 266-nm and 355-nm Nd: YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering [J]. Applied Optics, 2004, 43(29): 5564-5574. https://www.ncbi.nlm.nih.gov/pubmed/15508615 [224] SARATHY S H M. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels [J]. Combustion and Flame, 2017, 178: 46-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c612774a7b4806df16ca2a81cbd90bf [225] LIANG S, LI Z S, GAO J L, et al. PAHs and soot formation in laminar partially premixed co-flow flames fuelled by PRFs at elevated pressures [J]. Combustion and Flame, 2019, 206: 363-378. https://www.sciencedirect.com/science/article/pii/S0010218019302111 [226] MAKWANA A, WANG Y F, IYER S, et al. Effect of fuel composition on soot and aromatic species distributions in laminar, co-flow flames. Part 2. Partially-premixed fuel [J]. Combustion and Flame, 2018, 189: 456-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dfe0bfcca7d8d063b051f97002ccc84 [227] MANSOUR M S, PETERS N, CHEN Y C. Investigation of scalar mixing in the thin reaction zones regime using a simultaneous CH-LIF/Rayleigh laser technique [J]. Symposium (International) on Combustion, 1998, 27(1): 767-773. https://www.sciencedirect.com/science/article/pii/S0082078498804712 [228] DEVYNCK P, DESGROUX P, GASNOT L, et al. CCl, CH, and NO LIF measurements in methane-air flames seeded with chlorinated species: Influence of CH3Cl and CH2Cl2 on CCl and NO formation [J]. Symposium (International) on Combustion, 1998, 27(1): 461-468. [229] 马骁, 何旭, 王建昕.激光诱导荧光法用于内燃机燃烧可视化的研究进展[J].车用发动机, 2008(1): 7-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200801002MA X, HE X, WANG J X. Research progress of laser-induced fluorescence in combustion visualization of internal combustion engine [J]. Vehicle Engine, 2008(1): 7-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyfdj200801002 [230] 马骁, 何旭, 王建盺, 等.基于PLIF方法的GDI喷雾和缸内混合气研究[C]//中国内燃机学会2009年学术年会暨中小功率柴油机分会、基础件分会联合学术年会论文集. 2009. [231] MARRERO-SANTIAGO J, VERDIER A, VANDEL A, et al. Effect of injector spacing in the light-around ignition efficiency and mechanisms in a linear swirled spray burner [J]. Heat and Mass Transfer, 2019, 55(7): 1871-1885. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ff053c1862a1dbc6df6f4064a8d2489 [232] LIN M T, SICK V. Mixture evaporative characteristics prediction for LIF measurements using PSRK (predictive Soave-redlich-kwong) equation of state [R]. SAE Technical Paper 2002-01-2750, 2002. [233] 马骁, 何旭, 王建昕, 等.用激光诱导荧光法测量GDI发动机缸内混合气分布[J].内燃机工程, 2010, 31(4): 1-5, 10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc201004001MA X, HE X, WANG J X, et al. In-cylinder mixture distribution measurement in a GDI engine using laser-induced fluorescence [J]. Chinese Internal Combustion Engine Engineering, 2010, 31(4): 1-5, 10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjgc201004001 [234] BARDI M, DI LELLA A, BRUNEAUX G. A novel approach for quantitative measurements of preferential evaporation of fuel by means of two-tracer laser induced fluorescence [J]. Fuel, 2019, 239: 521-533. doi: 10.1016/j.fuel.2018.11.039 [235] BARATTA M, MISUL D A, XU J J, et al. Development of a high performance natural gas engine with direct gas injection and variable valve actuation [J]. SAE International Journal of Engines, 2017, 10(5): 2535-2551. doi: 10.4271/2017-24-0152 [236] KRANZ P, FUHRMANN D, GOSCHUTZ M, et al. In-cylinder LIF imaging, IR-absorption point measurements, and a CFD simulation to evaluate mixture formation in a CNG-fueled engine [J]. SAE International Journal of Engines, 2018, 11(6): 1221-1238. doi: 10.4271/2018-01-0633 [237] TROST J, ZIGAN L, LEIPERTZ A, et al. Characterization of four potential laser-induced fluorescence tracers for diesel engine applications [J]. Applied Optics, 2013, 52(33): 8001-8007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b9bf773aae3722e8f5eb15520deda38 [238] 唐青龙, 刘海峰, 李明坤, 等.双燃料发动机缸内分层激光诱导荧光实验及化学动力学模拟研究[J].物理化学学报, 2016, 32(12): 2879-2890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201612009TANG Q L, LIU H F, LI M K, et al. Study on in-cylinder charge stratification of a dual-fuel engine using fuel-tracer laser-induced fluorescence and chemical kinetic simulation [J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2879-2890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201612009 [239] SALAZAR V M, KAISER S A, HALTER F. Optimizing precision and accuracy of quantitative PLIF of acetone as a tracer for hydrogen fuel [J]. SAE International Journal of Fuels and Lubricants, 2009, 2(1): 737-761. https://www.sae.org/publications/technical-papers/content/2009-01-1534/ [240] PETERSON B, BAUM E, BÖHM B, et al. Spray-induced temperature stratification dynamics in a gasoline direct-injection engine [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2923-2931. https://www.sciencedirect.com/science/article/pii/S1540748914002612 [241] PETERSON B, BAUM E, DREIZLER A, et al. An experimental study of the detailed flame transport in a SI engine using simultaneous dual-plane OH-LIF and stereoscopic PIV [J]. Combustion and Flame, 2019, 202: 16-32. https://www.sciencedirect.com/science/article/abs/pii/S0010218018305418 [242] GARCÍA-OLIVER J M, MALBEC L M, TODA H B, et al. A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays [J]. Combustion and Flame, 2017, 179: 157-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15189f9b7372f1c287eeaaa9f583143 [243] ZHONG W J, XUAN T M, HE Z X, et al. Experimental study of combustion and emission characteristics of diesel engine with diesel/second-generation biodiesel blending fuels [J]. Energy Conversion and Management, 2016, 121: 241-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7f2b74a890958121f578ad3a4bfb8c5 [244] MAES N, BAKKER P C, DAM N, et al. Transient flame development in a constant-volume vessel using a split-scheme injection strategy [J]. SAE International Journal of Fuels and Lubricants, 2017, 10(2): 318-327. doi: 10.4271/2017-01-0815 [245] BAKKER P C, MAES N, DAM N. The potential of on- and off-resonant formaldehyde imaging combined with bootstrapping in diesel sprays [J]. Combustion and Flame, 2017, 182: 20-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=730965d07139ded170e443ddbfb5fbca [246] OTTENWÄLDER T, RAFFIUS T, SCHULZ C, et al. Fuel effects on NO formation in diesel-like jets in a vessel [J]. Combustion and Flame, 2019, 206: 201-210. doi: 10.1016/j.combustflame.2019.04.053 [247] FRIESEN E, GESSENHARDT C, KAISER S A, et al. In-cylinder temperature measurements via time-correlated single-photon counting of toluene laser-induced fluorescence through a fiber-based sensor [J]. Optics Letters, 2012, 37(24): 5244-5246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=916754d43f374d4bd7ccbd769df3844a [248] GESSENHARDT C, SCHULZ C, KAISER S A. Endoscopic temperature imaging in a four-cylinder IC engine via two-color toluene fluorescence [J]. Proceedings of the Combustion Institute, 2015, 35(3): 3697-3705. https://www.sciencedirect.com/science/article/pii/S1540748914002430 [249] PETERSON B, BAUM E, BÖHM B, et al. Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine [J]. Applied Physics B, 2014, 117(1): 151-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b99300251a21a9c163d233391e1ff950 [250] SCOTT B, WILLMAN C, WILLIAMS B, et al. In-cylinder temperature measurements using laser induced grating spectroscopy and two-colour PLIF [J]. SAE International Journal of Engines, 2017, 10(4): 2191-2201. https://www.sae.org/publications/technical-papers/content/2017-24-0045/ [251] KAISER S A, SCHILD M, SCHULZ C. Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2911-2919. doi: 10.1016/j.proci.2012.05.059 [252] WANG Q L, ZHANG Y Y, JIANG L Q, et al. Quantitative gaseous temperature and mole concentration measurements in spray generated mixture by p-xylene-PLIF imaging [J]. Combustion Science and Technology, 2018, 190(6): 949-966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2017.1416359 [253] ITANI L M, BRUNEAUX G, DI LELLA A, et al. Two-tracer LIF imaging of preferential evaporation of multi-component gasoline fuel sprays under engine conditions [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2915-2922. https://core.ac.uk/display/49550300 [254] ZIGAN L, TROST J, LEIPERTZ A. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence [J]. Applied Optics, 2016, 55(6): 1453-1460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37e47600b14df73c4cf0dc54f67d624c [255] MURRAY A M, MELTON L A. Fluorescence methods for determination of temperature in fuel sprays [J]. Applied Optics, 1985, 24(17): 2783-2787. https://www.ncbi.nlm.nih.gov/pubmed/18223954 [256] ESCOBAR S, GONZALEZ J E, RIVERA L. Laser-induced fluorescence temperature sensor for in-flight droplets [J]. Experimental Heat Transfer, 2001, 14(2): 119-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/08916150120381 [257] KRONEMAYER H, BESSLER W G, SCHULZ C. Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry [J]. Applied Physics B, 2005, 81(8): 1071-1074. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=661e90c8fa31452bf651f9df924a8914 [258] 孙田, 郭焱, 李国华. BUMP燃烧室内柴油喷雾气液相缸内浓度场测量激光诱导荧光法的实现和研究[J].小型内燃机与摩托车, 2011, 40(2): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxnrj201102001SUN T, GUO Y, LI G H. Concentration distribution measurement of liquid-and vapor-phase of diesel spray by using planar laser induced exciplex fluorescence technique [J]. Small Internal Combustion Engine and Motorcycle, 2011, 40(2): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxnrj201102001 [259] 谢腾飞.使用PLIEF技术定量研究重型柴油机高负荷类似条件下多组份燃油的喷雾结构和特性[D].天津: 天津大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266817.htmXIE T F. Quantitative study of spray structure and characteristics of multi-component fuel under high-load like conditions of heavy duty diesel engine by PLIEF technique [D]. Tianjin: Tianjin University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-1011266817.htm [260] 王卓卓.基于PLIEF技术两次喷射柴油喷雾结构和特性的定量研究[D].天津: 天津大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10056-1013005128.htmWANG Z Z. Quantitative study of diesel spray structure and characteristics of twice fuel injection by PLIEF technique [D]. Tianjin: Tianjin University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10056-1013005128.htm [261] TANG M, ZHANG J X, ZHU X C, et al. Comparison of direct-injection spray development of E10 gasoline to a single and multi-component E10 gasoline surrogate [J]. SAE International Journal of Fuels and Lubricants, 2017, 10(2): 352-368. https://www.sae.org/publications/technical-papers/content/2017-01-0833/ [262] ANDERSSON M, YAMAGUCHI A, WANG H. Imaging of gasoline-like sprays with planar laser-induced exciplex fluorescence using a stereoscopic imaging system [C]//Proc of the 28th European Conference on Liquid Atomization and Spray Systems (ILASS). 2017. [263] ZHANG G, XU M, ZHANG Y Y, et al. Macroscopic characterization of flash-boiling multi-hole sprays using planar laser induced exciplex fluorescence technique. part i. on-axis spray structure [J]. Atomization and Sprays, 2012, 22(10): 861-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56d06199c4776806af9d599ce7f6577b [264] ZHANG G, XU M, ZHANG Y Y, et al. Macroscopic characterization of flash-boiling multihole sprays using planar laser-induced exciplex fluorescence. Part ii: cross-sectional spray structure [J]. Atomization and Sprays, 2013, 23(3): 265-278. http://www.researchgate.net/publication/273223742_MACROSCOPIC_CHARACTERIZATION_OF_FLASH-BOILING_MULTIHOLE_SPRAYS_USING_PLANAR_LASER-INDUCED_EXCIPLEX_FLUORESCENCE._PART_II_CROSS-SECTIONAL_SPRAY_STRUCTURE [265] ZHANG Y Y, ZHANG G M, XU M, et al. Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence [J]. Experiments in Fluids, 2013, 54(8): 1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7aa3ae46df45ea991a07536dd31fac14 [266] LIU Y, PEI Y Q, GUO R T, et al. Investigation of the liquid fuel film from GDI spray impingement on a heated surface with the laser induced fluorescence technique [J]. Fuel, 2019, 250: 211-217. doi: 10.1016/j.fuel.2019.03.120 [267] ITO A, MOCHIDUKI K, KIKUHARA K, et al. A study on measurement of conformability of the piston oil ring on the cylinder bore under engine operating condition by LIF method using optical fiber [C]//Proceedings of ASME 2013 Internal Combustion Engine Division Fall Technical Conference. 2013. [268] AYRANCI Y E, AKALIN O. Continuous lubricant film thickness measurement between piston ring and cylinder bore [J]. Journal of Engineering for Gas Turbines and Power, 2017, 140(7): 072802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5bcbcf6786755285ec27ce49f8819eb [269] OBERT P, FVÜER H J, BARTEL D. Oil distribution and oil film thickness within the piston ring-liner contact measured by laser-induced fluorescence in a reciprocating model test under starved lubrication conditions [J]. Tribology International, 2019, 129: 191-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5e142b7a9bc25a2d5be78ca17e07f00 [270] 何旭, 戴钰杰, 郑亮, 等.二维消光法在乙烯火焰碳烟浓度测量中的应用[J].中国电机工程学报, 2012, 32(26): 57-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201226009HE X, DAI Y J, ZHENG L, et al. Application of two-dimensional light extinction technique for soot concentration measurement in an axisymmetric laminar diffusion flame [J]. Proceedings of the CSEE, 2012, 32(26): 57-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201226009 [271] 何旭, 马骁, 王建昕.用激光诱导炽光法定量测量火焰中的碳烟浓度[J].燃烧科学与技术, 2009, 15(4): 344-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200904011HE X, MA X, WANG J X. Quantitative soot concentration measurement of flame by laser induced incandescence [J]. Journal of Combustion Science and Technology, 2009, 15(4): 344-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs200904011 [272] 李红梅, 何旭, 郑亮, 等.激光诱导炽光技术用于碳烟粒径测试的研究[J].工程热物理学报, 2013, 34(7): 1389-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201307045LI H M, HE X, ZHENG L, et al. Study on the measurement of soot particle size by laser induced incandescence [J]. Journal of Engineering Thermophysics, 2013, 34(7): 1389-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201307045 [273] 王飞, 严建华, 马增益, 等.运用激光诱导发光法测量碳黑粒子浓度的模拟计算[J].中国电机工程学报, 2006, 26(7): 6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200607002WANG F, YAN J H, MA Z Y, et al. Simulation on soot concentration measurement with laser induced incandescence [J]. Proceedings of the CSEE, 2006, 26(7): 6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb200607002 [274] GREIS A E, GRVNEFELD G, Becker M, et al. Quantitative mesurements of the soot distribution in a realistic common rail DI diesel engine [C]//Proc of the 11th International Symposium on Application of Laser Techniques to Fluid Mechanics. 2002. [275] SCHULZ C, KOCK B F, HOFMANN M, et al. Laser-induced incandescence: recent trends and current questions [J]. Applied Physics B, 2006, 83(3): 333-354. doi: 10.1007/s00340-006-2260-8 [276] ZIZAK G. Laser induced incandescence (LII) of soot [C]//Proc of ICS Training Course on Laser Diagnostics of Combustion Process. 2000. [277] BOIARCIUC A, FOUCHER F, MOUNAÏM-ROUSSELLE C. Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence [J]. Applied Physics B, 2006, 83(3): 413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1937c39365cbcef8223e857f79e66aac [278] PASTOR J V, GARCÍA-OLIVER J M, GARCÍA A, et al. Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions [J]. Combustion and Flame, 2016, 164: 212-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b403883595da19f1b92d59ee11d7dea [279] DE IULIIS S, MIGLIORINI F, CIGNOLI F, et al. 2D soot volume fraction imaging in an ethylene diffusion flame by two-color laser-induced incandescence (2C-LII) technique and comparison with results from other optical diagnostics [J]. Proceedings of the Combustion Institute, 2007, 31(1): 869-876. https://www.sciencedirect.com/science/article/pii/S1540748906001568 [280] LI Z M, ROBERTS G, MUSCULUS M. Dilution and injection pressure effects on ignition and onset of soot at threshold-sooting conditions by simultaneous PAH-PLIF and soot-PLII imaging in a heavy duty optical diesel engine [J]. SAE International Journal of Advances and Current Practices in Mobility, 2019, 1(3):1100-1116. doi: 10.4271/2019-01-0553 [281] ECKBRETH A C. Effects of laser-modulated particulate incandescence on Raman scattering diagnostics [J]. Journal of Applied Physics, 1977, 48(11): 4473-4479. doi: 10.1063/1.323458 [282] MELTON L A. Soot diagnostics based on laser heating [J]. Applied Optics, 1984, 23(13): 2201. doi: 10.1364/AO.23.002201 [283] DEC J E, ESPEY C. Ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics [J]. SAE transactions, 1995, 104(3): 853-875. https://www.sae.org/publications/technical-papers/content/950456/ [284] 郑亮.用激光诱导炽光法研究燃烧过程中的碳烟生成特性[D].北京: 清华大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015812012.htmZHENG L. Research on soot formation characteristics in combustion process using laser induced incandescence [D]. Beijing: Tsinghua University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015812012.htm [285] SNELLING D R, SMALLWOOD G J, LIU F S, et al. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity [J]. Applied Optics, 2005, 44(31): 6773-6785. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4eb9281b7a87c7fc7de7bbb873f8ddcf [286] SMALLWOOD G J, CLAVEL D, GAREAU D, et al. Concurrent quantitative laser-induced incandescence and SMPS measurements of EGR effects on particulate emissions from a TDI diesel engine [R]. SAE Technical Paper 2002-01-2715, 2002. [287] HE X, MA X, WU F J, et al. Investigation of soot formation in laminar diesel diffusion flame by two-color laser induced incandescence [R]. SAE Technical Paper 2008-01-1064, 2008. [288] 何旭, 张志鹏, 吴昊, 等.基于二维激光诱导炽光法的棉籽油扩散火焰碳烟生成特性[J].北京理工大学学报, 2019, 39(3): 235-240, 326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb201903003HE X, ZHANG Z P, WU H, et al. Investigation on the soot formation of cottonseed oil diffusion flame by two-dimensional laser induced incandescence [J]. Transactions of Beijing Institute of Technology, 2019, 39(3): 235-240, 326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb201903003 [289] 唐青龙, 张鹏, 刘海峰, 等.利用激光诱导炽光法定量测量柴油机缸内燃烧过程碳烟体积分数[J].物理化学学报, 2015, 31(5): 980-988. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201505023TANG Q L, ZHANG P, LIU H F, et al. Quantitative measurements of soot volume fractions in diesel engine using laser-induced incandescence method [J]. Acta Physico-Chimica Sinica, 2015, 31(5): 980-988. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201505023 [290] CROSLAND B M, JOHNSON M R, THOMSON K A. Analysis of uncertainties in instantaneous soot volume fraction measurements using two-dimensional, auto-compensating, laser-induced incandescence (2D-AC-LII) [J]. Applied Physics B, 2011, 102(1): 173-183. doi: 10.1007/s00340-010-4130-7 [291] HADWIN P J, SIPKENS T A, THOMSON K A, et al. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements [J]. Applied Physics B, 2016, 122(1): 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24ef3d0f80a57c0cc50510157e4a7a44 [292] Dantec Dynamics A/S. LDA and PDA reference manual [M]. Skovlunde, Denmark: Dantec Dynamics A/S, 2011. [293] 郭恒杰, 李雁飞, 徐宏明, 等.基于三维PDPA的旋流式GDI喷油器喷雾特性[J].内燃机学报, 2015, 33(4): 335-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201504007GUO H J, LI Y F, XU H M, et al. Spray characteristics of swirl-type GDI injector using 3D-PDPA [J]. Transactions of Csice, 2015, 33(4): 335-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201504007 [294] 杜青, 陈世兴, 郭瑾朋, 等.幂律流体旋流射流的喷雾特性实验[J].天津大学学报, 2016, 49(9): 929-935. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb201609007DU Q, CHEN S X, GUO J P, et al. Experiment on the spray characteristics of power law fluid in a swirl injector [J]. Journal of Tianjin University, 2016, 49(9): 929-935. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb201609007 [295] 郭恒杰, 李雁飞, 李莉, 等.棕榈油生物柴油掺混燃料宏观与微观喷雾特性[J].内燃机学报, 2015, 33(5): 385-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201505001GUO H J, LI Y F, LI L, et al. Experiment on macroscopic and microscopic spray characteristics of palm oil methyl ester [J]. Transactions of Csice, 2015, 33(5): 385-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb201505001 [296] GUO H J, DING H C, LI Y F, et al. Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector [J]. Fuel, 2017, 199: 125-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d70049093e3d3c4c448440ca5661effd [297] LI Y F, GUO H J, MA X, et al. Droplet dynamics of DI spray from sub-atmospheric to elevated ambient pressure [J]. Fuel, 2016, 179: 25-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58ef7350f080ab83c44c1b2e1bb77682 [298] LI Y F, GUO H J, SHEN Y T, et al. Macroscopic and microscopic characteristics of gasoline and butanol spray atomization under elevated ambient pressures [J]. Atomization and Sprays, 2018, 28(9): 779-795. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1da7f9d067de173cfa01ae8093b6f30a [299] WANG Z M, MA X, JIANG Y Z, et al. Influence of deposit on spray behaviour under flash boiling condition with the application of closely coupled split injection strategy [J]. Fuel, 2017, 190: 67-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ec988ca9da3f7c7ef8db5f8766c2658 [300] JIANG C Z, PARKER M C, HELIE J, et al. Impact of gasoline direct injection fuel injector hole geometry on spray characteristics under flash boiling and ambient conditions [J]. Fuel, 2019, 241: 71-82. https://www.sciencedirect.com/science/article/pii/S0016236116311073 [301] KRAMER M, KULL E, WENSING M. Flashboiling-induced targeting changes in gasoline direct injection sprays [J]. International Journal of Engine Research, 2016, 17(1): 97-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ca664d51e58292916a3398052ba1992 [302] LACOSTE J, CRUA C, HEIKAL M, et al. PDA characterisation of dense diesel sprays using a common-rail injection system [J]. SAE transactions, 2003, 112(4): 2074-2085. https://www.sae.org/publications/technical-papers/content/2003-01-3085/ -