Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique
-
摘要: 层流燃烧速度是确定燃烧传播模型和验证化学反应机理的关键参数。搭建了本生灯实验系统和纹影实验系统用于探究甲烷预混层流燃烧特性,通过本生灯法和纹影技术测得了甲烷/氮气/空气的层流燃烧速度和火焰外部流场,并且探究了当量比及氮气掺混对层流燃烧速度和火焰外部流场的影响。研究发现,当量比对甲烷层流预混火焰燃烧特性有着重要的影响,随着当量比的增加,层流燃烧速度先增大后减小,锥形火焰高度先减小后增加,火焰外部流场开始逐渐趋于稳定;氮气掺混对层流燃烧速度起着降低的作用,且掺混的氮气越多,层流燃烧速度降低幅度越大;掺混氮气后火焰高度增加,但是火焰外部流场变得更加紊乱,难以稳定。Abstract: The laminar burning velocity is a key parameter for determining the combustion propagation model and verifying the chemical reaction mechanism. In this paper, the Bunsen burner experiment system and the schlieren experiment system are built to carry out research on the laminar premixed combustion characteristics of methane. The laminar burning velocity and the flame external field of methane/nitrogen/air were measured by the Bunsen burner method and the schlieren technique respectively, and the effects of equivalence ratio (ER) and nitrogen blending on the laminar burning velocity and the external field of the flame were investigated. The following conclusions are obtained through experiments: the equivalence ratio has an important influence on the laminar premixed combustion characteristics of the methane; and as the equivalence ratio increases, the laminar burning velocity increases first and then decreases, and the cone flame height decreases first and then increases; as well the external field of the flame starts to stabilize gradually. Nitrogen blending plays a negative role in the laminar burning velocity variation, at the same fime, the more nitrogen is blended, the more the laminar burning velocity decreases. The flame height increases with the increase of N2 doping ratio, but the external flow field of the flame becomes more disordered and difficult to stabilize.
-
表 1 甲烷/空气层流预混火焰实验工况
Table 1. Experimental data for CH4/Air laminar premixed flame
当量比
Φ甲烷流量
/(mL·min-1)氧气流量
/(mL·min-1)空气流量
/(mL·min-1)0.90 280 622.22 2962.96 0.95 280 589.47 2807.02 1.00 280 560.00 2666.67 1.05 280 533.33 2953.68 1.10 280 509.09 2424.24 1.15 280 486.96 2318.84 1.20 280 466.67 2222.22 1.25 280 448.00 2133.33 1.30 280 430.77 2051.28 1.35 280 414.81 1975.31 1.40 280 400.00 1904.76 1.45 280 386.21 1839.01 1.50 280 666.67 1777.78 1.55 280 361.29 1720.43 1.60 280 350.00 1666.67 表 2 甲烷流量为260 mL/min、掺混20%氮气时实验工况
Table 2. Experimental data for methane of 260 mL/min with 20% N2 blending
当量比
Φ甲烷流量
/(mL·min-1)氧气流量
/(mL·min-1)空气流量
/(mL·min-1)掺混氮气流量
/(mL·min-1)总氮气流量
/(mL·min-1)1.00 260 520.00 2476.19 65 2021.19 1.05 260 495.24 2358.28 65 1928.04 1.10 260 472.73 2251.08 65 1843.35 1.15 260 452.17 2153.21 65 1766.04 1.20 260 433.33 2063.49 65 1695.16 1.25 260 416.00 1980.95 65 1629.95 1.30 260 400.00 1904.76 65 1569.76 1.35 260 385.19 1834.22 65 1514.03 1.40 260 371.43 1768.21 65 1462.28 表 3 甲烷流量为260 mL/min、掺混40%氮气时实验工况
Table 3. Experimental data for methane of 260 mL/min with 40% N2 blending
当量比
Φ甲烷流量
/(mL·min-1)氧气流量
/(mL·min-1)空气流量
/(mL·min-1)掺混氮气流量
/(mL·min-1)总氮气流量
/(mL·min-1)1.00 260 520.00 2476.19 173.33 2129.53 1.05 260 495.24 2358.28 173.33 2036.37 1.10 260 472.73 2251.08 173.33 1951.69 1.15 260 452.17 2153.21 173.33 1874.37 1.20 260 433.33 2063.49 173.33 1803.49 1.25 260 416.00 1980.95 173.33 1738.29 1.30 260 400.00 1904.76 173.33 1678.10 1.35 260 385.19 1834.22 173.33 1622.36 1.40 260 371.43 1768.21 173.33 1570.61 -
[1] BP Statistical Review of World Energy 2019: an unsustainable path[EB/OL]. https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2019/2019eobook.pdf. [2] DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar flame velocity for components of natural gas[J]. Energy and Fuels, 2011, 25(9):3875-3884. doi: 10.1021/ef200707h [3] LAMOUREUX N, PAILLARD C E. Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety[J]. Shock Waves, 2003, 13(1):57-68. http://cn.bing.com/academic/profile?id=5c06da8d042dc570b6d4990d722ad474&encoded=0&v=paper_preview&mkt=zh-cn [4] YANG W, LIU G, GONG Y, et al. Microbial alteration of natural gas in Xinglongtai field of the Bohai Bay Basin, China[J]. Chinese Journal of Geochemistry, 2012, 31(1):55-63. doi: 10.1007/s11631-012-0549-3 [5] IBARRETA, ALFONSO F, SUNG C J. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry[J]. Applied Optics, 2005, 44(17): 3565-3575. doi: 10.1364/AO.44.003565 [6] DUNN-RANKIN D, WEINBERG F. Location of the schlieren image in premixed flames: axially symmetrical refractive index fields[J]. Combustion and Flame, 1998, 113(3):303-311. doi: 10.1016/S0010-2180(97)00233-2 [7] ZHANG M, WANG J, XIE Y, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52: 288-296. doi: 10.1016/j.expthermflusci.2013.10.002 [8] VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science and Technology, 2008, 22(2):312-319. doi: 10.1007/s12206-007-1043-4 [9] GU X, LI Q, HUANG Z. Laminar burning characteristics of diluted n-butanol/air mixtures[J]. Combustion Science and Technology, 2011, 183(12):1360-1375. doi: 10.1080/00102202.2011.600275 [10] 周昊, 吕小亮, 李清毅, 等.应用背景纹影技术的温度场测量[J].中国电机工程学报, 2011, 31(5):63-67. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htmZHOU H, LYU X L, LI Q Y, et al. Temperature measurements using the background oriented schlieren technique[J]. Proceedings of the CSEE, 2011, 31(5): 63-37. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htm [11] 张杨竣, 逯红梅, 王启, 等.天然气法向火焰传播速度仿真与实验测试[J].煤气与热力, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005ZHANG Y J, LU H M, WANG Q, et al. Simulation and experimental test of normal flame propagation velocity of natural gas[J]. Gas & Heat, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005 [12] HU X, YU Q, LIU J, et al. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation[J]. Energy, 2014, 70: 626-634. doi: 10.1016/j.energy.2014.04.029 [13] DONG C, ZHOU Q, ZHAO Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 2009, 88(10): 1858-1863. doi: 10.1016/j.fuel.2009.04.024 [14] ZHEN H, LEUNG C, CHEUNG C, et al. Characterization of biogas-hydrogen premixed flames using Bunsen burner[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13292-13299. doi: 10.1016/j.ijhydene.2014.06.126 [15] 王金华, 方宇, 黄佐华, 等.利用高速摄影纹影法研究天然气高压喷射射流特性[J].内燃机学报, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004WANG J H, FANG Y, HUANG Z H, et al. Experimental study of the jet characteristics of high pressure injected natural gas using high speed photograph method[J]. Transactions of CSICE, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004 [16] 李华, 杨臧健, 吴敏, 等.纹影系统中物平面的选择与刀口的设置[J].实验流体力学, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020LI H, YANG Z J, WU M, et al. Selection of object plane and arrangement of knife edge for a schlieren system[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020 [17] REN F, CHU H, XIANG L, et al. Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas[J]. Journal of the Energy Institute, 2019, 92(4): 1178-1190. doi: 10.1016/j.joei.2018.05.011 [18] XIANG L, CHU H, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. Journal of the Energy Institute, 2019, 92(5): 1487-1501. doi: 10.1016/j.joei.2018.06.018 [19] 王根娟, 杨臧健, 孟晟, 等.背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J].实验流体力学, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtmlWANG G J, YANG Z J, MENG S, et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtml [20] 李兴虎.氮气稀释丙烷空气混合气的层流火焰速度测量[J].燃烧科学与技术, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018LI X H. Mesasurement of laminar burning velocity on diluted air-propane mixture[J]. Journal of Combustion Science and Technology, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018 [21] HE Y, WANG Z, YANG L, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation[J]. Fuel, 2012, 95:206-213. doi: 10.1016/j.fuel.2011.09.056 [22] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. doi: 10.1016/0894-1777(88)90043-X [23] KEE R J, RUPLEY F M, MILLER J A. Chemkin-Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics[R]. Sandia National Laboratories Report SAND89-8009B, 1993. [24] Chemical-Kinetic Mechanisms for Combustion Applications[EB/OL]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html. [25] DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method, application to the case of n-pentane[J]. Energy & Fuels, 2015, 29(1): 398-404. http://cn.bing.com/academic/profile?id=a82787013edc4093df3e44050419fcdf&encoded=0&v=paper_preview&mkt=zh-cn [26] ZAHEDI P, YOUSEFI K. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures[J]. Journal of Mechanical Science and Technology, 2014, 28(1): 377-386. doi: 10.1007/s12206-013-0970-5 [27] MAZAS A N, FIORINA B, LACOSTE D A, et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames[J]. Combustion and Flame, 2011, 158(12): 2428-2440. doi: 10.1016/j.combustflame.2011.05.014 [28] NILSSON E J K, VAN SPRANG A, LARFELDT J, et al. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane[J]. Fuel, 2017, 189:369-376. doi: 10.1016/j.fuel.2016.10.103 -