Review of automotive aerodynamics research based on physical models
-
摘要: 汽车空气动力学涉及到绕流湍流、流动稳定性、流动分离与控制、流固耦合及噪声等复杂且基础的流体力学问题。本文梳理了国内外学者基于汽车物理模型的空气动力学研究进展,介绍了前人在气动力、流场研究、流动控制、计算和实验的对标、多车空气动力学、污染、风噪等方面取得的研究成果,分析了研究存在的不足,并对未来汽车空气动力学研究方向进行了探讨和展望。Abstract: Automotive aerodynamics involves fundamental fluid dynamics problems such as turbulence flow past bluff bodies, flow instability, flow separation and control, fluid-structure interactions and noise, and so on. In this paper, we review the research progress of aerodynamics based on physical models at home and abroad, introduce the achievements of previous studies on aerodynamics, flow field research, flow control, calculation and experiment, multi-vehicle aerodynamics, pollution, wind noise, etc., and investigate the shortcomings of the present studies. Finally, we discuss the research directions of vehicle aerodynamics in the future.
-
表 1 汽车空气动力学物理模型列表
Table 1. List of automotive aerodynamic physical models
模型名称 设计机构 设计时间 Ahmed[1] 德国宇航中心 1984 SAE[2] 意大利Pininfarina风洞 1999 NRSCC/SAE[3] 加拿大国家研究委员会 1996 Rover[4] 英国路虎汽车公司 1997 Davis[5] 英国帝国理工学院 1984 DOCTON[6] 英国杜伦大学 1998 Ford Block[7] 美国福特汽车公司 1999 GM[8] 美国通用汽车公司 2001 ASMO[9] 德国Daimler汽车公司 2000 RMIIT[10] 澳大利亚RMIT大学 2001 Chrysler[11] 美国Chrysler风洞 1994 MIRA[12] 英国MIRA风洞 1986 FORD[13] 美国福特汽车公司 1994 MIRA / ROVER[14] 英国MIRA & 路虎汽车 1994 CNR[15] 意大利Pininfarina风洞 1982 SAE/ PININFARINA[16] 意大利Pininfarina风洞 1998 DrivAer[17] 慕尼黑工业大学 2011 -
[1] AHMED S R, RAMM G, FALTIN G. Some salient features of the time-averaged ground vehicle wake[R]. SAE Technical Paper 840300, 1984. [2] LINDENER N. Aerodynamic testing of road vehicles in open jet wind tunnels[R]. SAE SP-1465, 1999. [3] COOPER K R. Closed-test-section wind tunnel blockage corrections for road vehicles[R]. SAE SP-1176, 1996. [4] HOWELL J, HICKMAN D. The influence of ground simulation on the aerodynamics of a simple car model[R]. SAE Technical Paper 970134, 1997. [5] BEARMAN P W. Some observations on road vehicle wakes[R]. SAE Technical Paper 840301, 1984. [6] SIMS-WILLIAMS D B, DOMINY R G. Experimental investigation into unsteadiness and instability in passenger car aerodynamics[R]. SAE Technical Paper 980391, 1998. [7] BARLOW J, GUTERRES R, RANZENBACH R, et al. Wake structures of rectangular bodies with radiused edges near a plane surface[R]. SAE Technical Paper 1999-01-0648, 1999. [8] KHALIGHI B, ZHANG S, KOROMILAS C, et al. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device[J]. SAE Transactions, 2001, 110(1): 1209-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027476066 [9] ARONSON D, BRAHIM S B, PERZON S. On the underbody flow of a simplified estate[R]. SAE Technical Paper 2000-01-0485, 2000. [10] ALAM F, WATKINS S, ZIMMER G, et al. Effects of vehicle A-pillar shape on local mean and time-varying flow properties[R]. SAE Technical Paper 2001-01-1086, 2001. [11] ROMBERG G F, GUNN J A, LUTZ R G. Thechrysler 3/8-scale pilot wind tunnel[J]. SAE Transactions, 1994, 103(1): 490-513. [12] CARR G, STAPLEFORD W. Blockage effects in automotive wind-tunnel testing[R]. SAE Technical Paper 860093, 1986. [13] WILLIAMS J, QUINLAN W J, HACKETT J E, et al. A calibration study of CFD for automotive shapes and CD[J]. SAE Transactions, 1994, 103(1): 308-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210682103 [14] LE GOOD M G, GARRY P K. On the use of reference models in automotive aerodynamics[R]. SAE Technical Paper 2004-01-1308, 2004. [15] COGOTTI A. Wake surveys of different car-body shapes with coloured isopressure maps[R]. SAE Technical Paper 840299, 1984. [16] COGOTTI A. A parametric study on the ground effect of a simplified car model[J]. SAE Transactions, 1998, 107(1): 180-204. [17] THEISSEN P, WOJCIAK J, HEULER K, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions-Part 1[R]. SAE Technical Paper 2011-01-0177, 2011. [18] ZHANG B F, ZHOU Y, TO S. Unsteady flow structures around a high-drag Ahmed body[J]. Journal of Fluid Mechanics, 2015, 777(1): 291-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM777\FLM\FLM777\S0022112015003328h.xml [19] SCHVTZ T, DES AUTOMOBILS H A. Stromungsmechanik, Warmetechnik, Fahrdynamik, Komfort[M]. Wiesbaden: Springer Vieweg, 2013. [20] MAYER W, WICKERN G. The new Audi A6/A7 family-aerodynamic development of different body types on one platform[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 197-206. http://cn.bing.com/academic/profile?id=2dcc205cf7d84995976ac7e8e38e7994&encoded=0&v=paper_preview&mkt=zh-cn [21] ZHANG Y C, ZHANG J T, WU K G, et al. Aerodynamic characteristics of MIRA fastback model in experiment and CFD[J]. International Journal of Automotive Technology, 2019, 20(4): 723-737. http://cn.bing.com/academic/profile?id=ee703d1dffd3e5891be429c16a31ed62&encoded=0&v=paper_preview&mkt=zh-cn [22] 张英潮, 曹惠南, 朱会. MIRA阶背式模型的瞬态流动结构分析[J].湖南大学学报, 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007ZHANG Y C, CAO H N, ZHU H. Instantaneous flow structure analysis of MIRA notchback model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007 [23] HEFT A I, INDINGER T, ADAMS N A. Experimental and numerical investigation of the DrivAer model[C]//Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012. [24] MACK S, INDINGER T, ADAMS N A, et al. The interior design of a 40% scaled DrivAer body and first experimental results[C]// Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012. [25] MATSUMOTO D, HAAG L, INDINGER T. Investigation of the unsteady external and underhood airflow of the DrivAer model by Dynamic Mode Decomposition Methods[J]. International Journal of Automotive Engineering, 2017, 8(2): 55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4264662 [26] PEICHL M, MACK S, INDINGER T, et al. Numerical investigation of the flow around a generic car using dynamic mode decomposition[C]// Proc of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014. [27] DOLCI V, ARINA R. Proper orthogonal decomposition as surrogate model for aerodynamic optimization[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004716828 [28] BEAUDOIN J F, AIDER J L. Drag and lift reduction of a 3D bluff body using flaps[J]. Experiments in Fluids, 2008, 44(4): 491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a867163f48b72948d9bb63948efaa72 [29] WANG H F, ZHOU Y, ZOU C, et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c2dd46be03f619f0d43174f6d78e11 [30] AIDER J L, BEAUDOIN J F O, WESFREID J E. Drag and lift reduction of a 3D bluff-body using active vortex generators[J]. Experiments in Fluids, 2010, 48(5): 771-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9555642aa42411f3c8b332a74ea1687 [31] ROUMÉAS M, GILLIÉRON P, KOURTA A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids, 2009, 38(1): 60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a827032168bb5ca96e887f89df929d5 [32] JOSEPH P, AMANDOLESE X, AIDER J L. Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5): 1169-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b51591b69a8082e2f9e91a9834f4db9a [33] JOSEPH, PIERRIC, AMANDOLESE, et al. Flow control using MEMS pulsed micro-jets on the Ahmed body[J]. Experiments in Fluids, 2013, 54(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=854f9f487a591e40057fa30ceae013e9 [34] ZHANG B, LIU K, ZHOU Y, et al. Active drag reduction of a high-drag Ahmed body based on steady blowing[J]. Journal of Fluid Mechanics, 2018, 856: 351-396. http://cn.bing.com/academic/profile?id=9efd13ac7894491acae952871b129b94&encoded=0&v=paper_preview&mkt=zh-cn [35] 亚森江·白克力. MIRA车型非光滑表面气流扰动减阻效能研究[D].杭州: 浙江大学, 2015.BAIKELI Y. Research on the aerodynamic drag reduction efficiency of MIRA model with non-smooth surface based on flow dicturbance[D]. Hangzhou: Zhejiang University, 2015. [36] SOARES R F, KNOWLES A, OLIVES S G A, et al. On the aerodynamics of an enclosed-wheel racing car: an assessment and proposal of add-on devices for a fourth, high-performance configuration of the DrivAer model[R]. SAE Technical Paper 2018-01-0725, 2018. [37] HEFT A, INDINGER T, ADAMS N. Investigation of unsteady flow structures in the wake of a realistic generic car model[C]// Proc of the 29th AIAA Applied Aerodynamics Conference. 2011. [38] ÖSTH J, NOACK B R, KRAJNOVIĆ S, et al. On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body[J]. Journal of Fluid Mechanics, 2014, 747: 518-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM747\FLM\FLM747\S0022112014001682h.xml [39] GUILMINEAU E. Numerical simulations of flow around a realistic generic car model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(2): 646-653. http://cn.bing.com/academic/profile?id=a0a9ae6a59cfbbac6993a83e80306c2f&encoded=0&v=paper_preview&mkt=zh-cn [40] FORBES D C, PAGE G J, PASSMORE M A, et al. A fully coupled, 6 degree-of-freedom, aerodynamic and vehicle handling crosswind simulation using the DrivAer model[R]. SAE Paper 2016-01-1601, 2016. [41] STOLL D, WIEDEMANN J. Active crosswind generation and its effect on the unsteady aerodynamic vehicle properties determined in an open jet wind tunnel[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2018, 11(5): 429-446. http://cn.bing.com/academic/profile?id=b2604b8d12b945897ca127029b446bbc&encoded=0&v=paper_preview&mkt=zh-cn [42] JOSEFSSON E, HAGVALL R, URQUHART M, et al. Numerical analysis of aerodynamic impact on passenger vehicles during cornering[R]. SAE Technical Paper 2018-37-0014, 2018. [43] COLLIN C, MACK S, INDINGER T, et al. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2016, 9(2): 657-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a667fb071e58eeb01e973e1f041d8f9a [44] RANZENBACH R, BARLOW J B, ESMAILI H. Practical application of the two-variable blockage correction method to automobile shapes[J]. SAE Transactions, 2001, 110(1): 695-707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027477795 [45] HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Effect of test section configuration on aerodynamic drag measurements[J]. SAE Transactions, 2001, 110(1): 680-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027475736 [46] VON SCHULZ-HAUSMANN F K, VAGT J D. Influence of test-section length and collector area on measurements in a 3/4-open-jet automotive wind tunnels[R]. SAE Technical Paper 880251, 1988. [47] HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Development of lift and drag corrections for open jet wind tunnel tests for an extended range of vehicle shapes[R]. SAE Technical Paper 2003-01-0934, 2003. [48] CARR G W. A comparison of the ground-plane-suction and moving-belt ground-representation techniques[R]. SAE Technical Paper 880249, 1988. [49] BERNDTSSON A, ECKERT W T, MERCKER E. The effect of groundplane boundary layer control on automotive testing in a wind tunnel[J]. SAE Transactions, 1988, 97(1): 215-230. http://cn.bing.com/academic/profile?id=aa73c79eb702f43bcefa9006c7cde1e1&encoded=0&v=paper_preview&mkt=zh-cn [50] AZIM A F A. An experimental study of the aerodynamic interference between road vehicles[R]. SAE Technical Paper 940422, 1994. [51] JAKIRLIC S, KUTEJ L, BASARA B, et al. Scale-resolving simulation of an 'on-road' overtaking maneuver involving model vehicles[R]. SAE Technical Paper 2018-01-0706, 2018. [52] RINGWALL E. Aeroacoustic sound sources around the wheels of a passenger car[D]. Gõteborg: Chalmers University of Technology, 2017. [53] LAFONT T, HORAK J, D'AMICO R, et al. Passive treatment solutions for the reduction of vehicle exterior tire noise[R]. SAE Technical Paper 2018-01-1571, 2018. [54] SIMMONDS N, TSOUTSANIS P, DRIKAKIS D, et al. Full vehicle aero-thermal cooling drag sensitivity analysis for various radiator pressure drops[R]. SAE Technical Paper 2016-01-1578, 2016. [55] 廖磊.车轮溅水及其对车身表面污染的仿真研究[D].长春: 吉林大学, 2014.LIAO L. Numerical research on wheel spray and related body soiling[D]. Changchun: Jilin University, 2014. -