基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究

孙健, 牛中国, 刘汝兵, 林麒

孙健, 牛中国, 刘汝兵, 林麒. 基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究[J]. 实验流体力学, 2019, 33(4): 81-88. DOI: 10.11729/syltlx20190041
引用本文: 孙健, 牛中国, 刘汝兵, 林麒. 基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究[J]. 实验流体力学, 2019, 33(4): 81-88. DOI: 10.11729/syltlx20190041
Sun Jian, Niu Zhongguo, Liu Rubing, Lin Qi. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88. DOI: 10.11729/syltlx20190041
Citation: Sun Jian, Niu Zhongguo, Liu Rubing, Lin Qi. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88. DOI: 10.11729/syltlx20190041

基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究

基金项目: 

国家自然科学基金项目 51707169

中航工业创新基金产学研项目 cxy2013XD28

福建自然科学基金项目 2019J01042

厦门大学校长基金项目 20720170057

详细信息
    作者简介:

    孙健(1989-), 男, 辽宁鞍山人, 工程师。研究方向:气动弹性和流动控制。通信地址:黑龙江省哈尔滨市南岗区一曼街2号88信箱(150001)。E-mail:sunjian999@qq.com

    通讯作者:

    刘汝兵, E-mail: lrb@xmu.edu.cn

    林麒: 刘汝兵, E-mail: lrb@xmu.edu.cn

  • 中图分类号: V211.7

The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet

  • 摘要: 为探究等离子体合成射流对三维模型的流动控制效果和机理,在中等展弦比飞翼布局模型前缘布置等离子体合成射流激励器开展低速风洞实验研究。通过六分量天平测力,考察沿弦向、展向不同分布位置的等离子体合成射流对飞翼模型气动力和气动力矩的作用;采用PIV(Particle Image Velocimetry,粒子图像测速)测量模型表面流场分布,研究等离子体合成射流流动控制机理。结果表明:在飞翼模型单侧布置等离子体合成射流,能够有效改善其气动特性,并能产生附加的滚转力矩,滚转力矩系数变化量最高达到0.009;在飞翼模型左右弦布置等离子体合成射流,能显著增强飞翼模型横向稳定性,滚转力矩系数波动范围减小66.7%。沿弦向,等离子体合成射流位置离前缘越近,控制效果越好,距前缘0mm的激励器控制效果最好;沿展向,布置的等离子体合成射流越多,对模型的升力特性改善作用越明显,布置方式以均布为优。在失速迎角前后,等离子体合成射流的流动控制机理不同:在小迎角下,等离子体合成射流在前缘起到了使转捩提前的作用;在失速迎角附近,则加速了分离区的流动、减小了分离区厚度。
    Abstract: To explore the effects and mechanisms of plasma synthetic jet flow control of the 3D model, a wing layout model with medium aspect ratio decorated with plasma synthetic jets on the leading edge is studied by means of low speed wind tunnel tests. The effects of the aerodynamic force and the aerodynamic moment on the airfoil model are investigated by measuring the force of the six component balance and the different distribution positions of the synthetic jet of the plasma. The flow field distribution on the surface of the model measured by PIV(Particle Image Velocimetry) is used to study the mechanism of the plasma jet flow control. Test results show that the unilateral arrangement of the plasma synthetic jet actuator can effectively improve the aerodynamic characteristics of the flying wing model, and can produce an additional roll moment with the variation of the roll moment coefficient reaching 0.009; The lateral stability of the flying wing model can be significantly enhanced by using the plasma synthetic efflux on the left and right side of the flying wing model, and the range of the rolling torque coefficient fluctuation decreases by 66.7%. Along the string, the closer the position of the plasma jet to the leading edg is, the better the control effect is, and the control effect of the exciter at the leading edge is the best. The more the plasma synthesized jet flows along the exhibition are arranged, the more obvious the improvement of the lift characteristics of the model is, and the uniform arrangement is the best. The flow control mechanism of the plasma synthetic jet actuator is different before and after the stall angle of attack. Under the small angle of attack, the synthesis of the plasma jet advances the transition, and near the stall angle of attack, the plasma synthetic jet accelerates the separation of the flow and reduces the separation-zone thick-ness.
  • 图  1   实验模型尺寸及激励器布置示意图

    Fig.  1   Schematic diagram of experimental model size and actuator arrangement

    图  2   飞翼布局模型安装图

    Fig.  2   Flying wing model set-up in wind tunnel

    图  3   实验系统简图

    Fig.  3   Sketch of experimental setup

    图  4   双腔等离子体激励器结构图

    Fig.  4   Structure diagram of two-cavity plasma actuator

    图  5   盖板及射流孔位置示意图

    Fig.  5   Schematic diagram of cover plate and jet hole location

    图  6   1.0mm射流孔出口速度

    Fig.  6   Exit velocity of 1.0 mm jet hole

    图  7   1.5mm射流孔出口速度

    Fig.  7   Exit velocity of 1.5 mm jet hole

    图  8   等离子体合成射流工作过程

    Fig.  8   Stages of the plasma synthetic jet operating cycle

    图  9   升力系数CL曲线

    Fig.  9   The chart of lift coefficient CL

    图  10   滚转力矩系数Cl曲线

    Fig.  10   The chart of roll moment coefficient Cl

    图  11   不同弦向位置的等离子体合成射流对升力系数的作用ΔCL

    Fig.  11   The effect of plasma synthetic jet with different chord positions on lift coefficient ΔCL

    图  12   不同弦向位置的等离子体合成射流对滚转力矩系数的作用ΔCl

    Fig.  12   The effect of plasma synthetic jet with different chord positions on roll moment coefficient ΔCl

    图  13   风速30m/s时升力系数CL

    Fig.  13   The chart of lift coefficient CL with 30m/s of wind speed

    图  14   风速30m/s时滚转力矩系数Cl

    Fig.  14   The chart of roll moment coefficient Cl with 30m/s of wind speed

    图  15   迎角16°时不带控制的流场

    Fig.  15   The flow chart without control at angle of attack 16°

    图  16   迎角16°时带控制的流场

    Fig.  16   The flow chart with control at angle of attack 16°

    图  17   迎角18°时激励器未开启

    Fig.  17   The actuators off at angle of attack 18°

    图  18   迎角18°时激励器开启

    Fig.  18   The actuators on at angle of attack 18°

    图  19   迎角20°时激励器未开启

    Fig.  19   The actuators off at angle of attack 20°

    图  20   迎角20°时激励器开启

    Fig.  20   The actuators on at angle of attack 20°

    表  1   FL-5风洞主要参数

    Table  1   FL-5 wind tunnel parameters

    Parameter Value
    Cross-section diameter/m 1.5
    Test-section length/m 1.95
    Cross-sectional area/m2 1.76625
    Design speed/(m·s-1) 53
    Mean turbulence 0.19%
    Static pressure gradient 0.0055
    Drop coefficient 1.0
    下载: 导出CSV

    表  2   单侧布置激励器参数

    Table  2   Actuator parameters on one side

    Case Voltage/kV Frequency/Hz Duty cycle Left wing actuator position
    Base 1~8
    Case Ⅰ 27.5 250 20 1~8
    下载: 导出CSV

    表  3   激励器位置及电源参数

    Table  3   The position of actuator and electrical parameters

    Case Voltage/kV Frequency/Hz Duty cycle Left wing actuator position Right wing actuator position
    Base OFF
    Case Ⅴ 27.5 250 20 2, 4, 6, 8 2, 4, 6, 8
    Case Ⅵ 27.5 250 20 6, 7, 8 6, 7, 8
    Case Ⅶ 27.5 250 20 3, 6 3, 6
    Case Ⅷ 27.5 250 20 2 2
    下载: 导出CSV
  • [1]

    Grossman K R, Cybyk B Z, VanWie D M, et al. SparkJet actuators for flow control[R]. AIAA-2003-0057, 2003.

    [2]

    Grossman K R, Cybyk B Z, Rigline M C, et al. Characteri-zation of SparkJet actuators for flow control[R]. AIAA-2004-0089, 2004.

    [3]

    Cybyk B Z, Simon D H, Land H B Ⅲ. Experimental characterization of a supersonic flow control actuator[R]. AIAA-2006-0478, 2006.

    [4]

    Haack S J, Land H B, Cybyk B, et al. Characterization of a high-speed flow control actuator using digital speckle tomogra-phy and PIV[R]. AIAA-2008-3759, 2008.

    [5]

    Popkin S H, Cybyk B Z, Land H B Ⅲ, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications[R]. AIAA-2013-0322, 2013.

    [6]

    Popkin S H, Cybyk B Z, Foster C H, et al. Experimental estimation of SparkJet efficiency[J]. AIAA Journal, 2016, 54(6):1831-1845. DOI: 10.2514/1.J052694

    [7]

    Emerick T, Ali M Y, Foster C, et al. SparkJet characteri-zations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12):1858. DOI: 10.1007/s00348-014-1858-6

    [8]

    Narayanaswamy V, Shin J, Clemens N T, et al. Investigation of plasma-generated jets for supersonic flow control[R]. AIAA-2008-0285, 2008.

    [9]

    Greene B R, Clemens N T, Micka D. Control of shock boundary layer interaction using pulsed plasma jets[R]. AIAA-2013-0405, 2013.

    [10]

    Anderson K, Knight D D. Characterization of single pulse of plasma jet[R]. AIAA-2012-0188, 2012.

    [11]

    Golbabaei-Asl M, Knight D, Wilkinson S. Noveltechnique to determine SparkJet efficiency[J]. AIAA Journal, 2015, 53(2):501-504. DOI: 10.2514/1.J053034

    [12]

    Reedy T M, Kale N V, Dutton J C, et al. Experimental characterization of a pulsed plasma jet[J]. AIAA Journal, 2013, 51(8):2027-2031. DOI: 10.2514/1.J052022

    [13]

    Ostman R J, Herges T G, Craig D J, et al. Effect on high-speed boundary-layer characteristics from plasma actuators[R]. AIAA-2013-0527, 2013.

    [14]

    Belinger A, Naudé N, Cambronne J P, et al. Plasma synthetic jet actuator:electrical and optical analysis of the discharge[J]. Journal of Physics D:Applied Physics, 2014, 47(34):345202. DOI: 10.1088/0022-3727/47/34/345202

    [15]

    Sary G, Dufour G, Rogire F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J]. AIAA Journal, 2014, 52(8):1591-1603. DOI: 10.2514/1.J052521

    [16]

    Chedevergne F, Léon O, Bodoc V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a plasma synthetic jet actuator[J]. International Journal of Heat and Fluid Flow, 2015, 56: 1-15.

    [17]

    Shin J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5):518-522. DOI: 10.1016/S1000-9361(09)60249-1

    [18]

    Chiatto M, de Luca L. Numerical and experimental frequency response of plasma synthetic jet actuators[R]. AIAA-2017-1884, 2017.

    [19]

    Zong H H, Kotsonis M. Effect of slotted exit orifice on performance of plasma synthetic jet actuator[J]. Experiments in Fluids, 2017, 58:17. DOI: 10.1007/s00348-016-2299-1

    [20] 张攀峰, 王晋军, 施威毅, 等.等离子体激励低速分离流动控制实验研究[J].实验流体力学, 2007, 21(2):35-39. DOI: 10.3969/j.issn.1672-9897.2007.02.008

    Zhang P F, Wang J J, Shi W Y, et al. Experimental study on the separation control by plasma actuator in subsonic flow[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2):35-39. DOI: 10.3969/j.issn.1672-9897.2007.02.008

    [21]

    Wang J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62:52-78. DOI: 10.1016/j.paerosci.2013.05.003

    [22] 王健磊, 孟宣市, 李华星, 等.等离子体控制下前体分离涡的研究[J].空气动力学学报, 2015, 33(6):740-746. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201506005

    Wang J L, Meng X S, Li H X, et al. Study on forebody separation vortices using plasma actuations[J]. Acta Aerodyna-mica Sinica, 2015, 33(6):740-746. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201506005

    [23] 单勇, 张靖周, 谭晓茗.火花型合成射流激励器流动特性及其激励参数数值研究[J].航空动力学报, 2011, 26(3):551-557. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201103011

    Shan Y, Zhang J Z, Tan X M. Numerical study of the flow characteristics and excitation parameters for the SparkJet actuator[J]. Journal of Aerospace Power, 2011, 26(3):551-557. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201103011

    [24] 朱晨彧.高性能零质量射流激励器试验研究与参数优选[D].南京: 南京航空航天大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D280754

    Zhu C Y. Experimental research and parameters optimization on high-performance zero-mass-jet actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D280754

    [25] 程林, 孙姝, 谭慧俊, 等.直缝式等离子体合成射流激励器特性的实验研究[J].推进技术, 2017, 38(9):1937-1942. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709003

    Cheng L, Sun S, Tan H J, et al. Experimental study on characteristics of plasma synthetic actuator with normal slot[J]. Journal of Propulsion Technology, 2017, 38(9):1937-1942. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709003

    [26] 吕元伟, 单勇, 张靖周, 等.火花型激励合成射流瞬时流场测试[J].航空动力学报, 2017, 32(10):2371-2377. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201710009

    Lyu Y W, Shan Y, Zhang J Z, et al. Measurement on instantaneous flow fields of a spark-excited synthetic jet[J]. Journal of Aerospace Power, 2017, 32(10):2371-2377. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201710009

    [27] 刘朋冲, 李军, 贾敏, 等.等离子体合成射流激励器的流场特性分析[J].空军工程大学学报:自然科学版, 2011, 12(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201106005

    Liu P C, Li J, Jia M, et al. Investigation on flow filed of the plasma synthetic jet device[J]. Journal of Air Force Engineering University:Natural Science Edition, 2011, 12(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201106005

    [28]

    Jin D, Cui W, Li Y H, et al. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow[J]. Chinese Journal of Aeronautics, 2015, 28(1):66-76. DOI: 10.1016/j.cja.2014.12.012

    [29] 宗豪华, 吴云, 宋慧敏, 等.等离子体合成射流的理论模型与重频激励特性[J].航空学报, 2015, 36(6):1762-1774. http://d.old.wanfangdata.com.cn/Periodical/hkxb201506004

    Zong H H, Wu Y, Song H M, et al. Analytical model and repetitive working characteristic of plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1762-1774. http://d.old.wanfangdata.com.cn/Periodical/hkxb201506004

    [30]

    Zhang Z B, Wu Y, Jia M, et al. The multichannel discharge plasma synthetic jet actuator[J]. Sensors and Actuators A:Physical, 2017, 253:112-117. DOI: 10.1016/j.sna.2016.11.011

    [31]

    Wang L, Luo Z B, Xia Z X, et al. Review of actuators for high speed active flow control[J]. Science China Technological Sciences, 2012, 55(8):2225-2240. DOI: 10.1007/s11431-012-4861-2

    [32] 王林, 罗振兵, 夏智勋, 等.等离子体合成射流能量效率及工作特性研究[J].物理学报, 2013, 62(12):125207. DOI: 10.7498/aps.62.125207

    Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12):125207. DOI: 10.7498/aps.62.125207

    [33]

    Wang L, Xia Z X, Luo Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4):879-882. DOI: 10.2514/1.J052686

    [34] 杨瑞, 罗振兵, 夏智勋, 等.高超声速导弹等离子体合成射流控制数值研究[J].航空学报, 2016, 37(6):1722-1732. http://d.old.wanfangdata.com.cn/Periodical/hkxb201606002

    Yang R, Luo Z B, Xia Z X, et al. Numerical study of plasma synthetic jet control on hypersonic missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732. http://d.old.wanfangdata.com.cn/Periodical/hkxb201606002

    [35]

    Zhou Y, Xia Z X, Luo Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control[J]. Science China Technological Sciences, 2017, 60(1):146-152. DOI: 10.1007/s11431-016-0248-4

    [36] 李亮, 李修乾, 车学科, 等.等离子体增强射流掺混的激励参数影响研究[J].实验流体力学, 2018, 32(5):41-47. http://www.syltlx.com/CN/abstract/abstract11142.shtml

    Li L, Li X Q, Che X K, et al. Study on the influence of incentive parameters on plasma-enhanced jet mixing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5):41-47. http://www.syltlx.com/CN/abstract/abstract11142.shtml

    [37]

    Liu R B, Niu Z G, Wang M M, et al. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets[J]. Science China Technological Sciences, 2015, 58(11):1949-1955. DOI: 10.1007/s11431-015-5881-5

    [38] 刘汝兵, 王萌萌, 郝明, 等.补气式等离子体射流发生器实验研究[J].航空学报, 2016, 37(6):1713-1721. http://d.old.wanfangdata.com.cn/Periodical/hkxb201606001

    Liu R B, Wang M M, Hao M, et al. Experimental research on air supplementing type plasma synthetic jet generator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1713-1721. http://d.old.wanfangdata.com.cn/Periodical/hkxb201606001

    [39] 刘汝兵, 牛中国, 王萌萌, 等.等离子体射流控制机翼气动力矩的实验研究[J].工程力学, 2016, 33(3):232-238. http://d.old.wanfangdata.com.cn/Conference/8358353

    Liu R B, Niu Z G, Wang M M, et al. Aerodynamic moments control of wing model using plasma jet[J]. Engineering Mechanics, 2016, 33(3):232-238. http://d.old.wanfangdata.com.cn/Conference/8358353

    [40]

    Caruana D, Barricau P, Gleyzes C. Separation control with plasma synthetic jet actuators[J]. International Journal of Aerodynamics, 2013, 3(1-3):71-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d80179bda165b41e95a63f895ad7d758

    [41] 李洋, 梁华, 贾敏, 等.等离子体合成射流改善翼型气动性能实验研究[J].推进技术, 2017, 38(9):1943-1949. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709004

    Li Y, Liang H, Jia M, et al. Experimental investigation of enhancing wing aerodynamic performance by plasma synthetic jet[J]. Journal of Propulsion Technology, 2017, 38(9):1943-1949. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709004

图(20)  /  表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  168
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-06-10
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭