Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process
-
摘要: 为了研究并联式TBCC(Turbine Based Combined Cycle)排气系统在模态转换过程中出口流场的变化特性及其气动性能的变化规律,采用动网格等技术完成了某并联式TBCC组合排气系统在整个模态转换过程中的非定常数值模拟。同时,对该排气系统模态转换过程中若干工况时的冷流进行了风洞试验,并将试验与数值仿真结果进行比较。研究结果表明:模态转换过程中,并联式TBCC排气系统出口流场的波系结构十分复杂,分流板出口激波对排气系统的气动性能产生了一定影响;TBCC排气系统的推力系数始终保持在0.9以上,但其产生的升力变化较大;风洞试验获得的壁面压力分布及流场纹影与数值模拟结果吻合较好,从而证明了本文数值模拟方法的可行性。Abstract: To study the flow characteristics and aerodynamic performance of an over-under TBCC exhaust system during the mode transition process, the unsteady numerical simulation of the mode transition process is completed by using dynamic grid method. Moreover, a series of cold flow wind tunnel tests of the TBCC exhaust system are carried out under several working conditions during the mode transition process, and the results are compared with the numerical simulation results. The results show that the wave structure of the TBCC exhaust flow field is extremely complex during the mode transition process, and the shock generated at the trailing edge of the splitter plate has some effects on the aerodynamic performance of the exhaust system. The axial thrust coefficient keeps above 0.9, yet the lift varies greatly during the process. The static pressure distribution on the walls and schlieren images obtained by wind tunnel experiments are consistent well with the numerical simulation results, which proves the accuracy of the numerical simulation results in this paper.
-
Key words:
- over-under TBCC /
- exhaust system /
- mode transition /
- wind tunnel test /
- aerodynamics performance
-
表 1 并联式TBCC排气系统试验工况点
Table 1. Experimental points of over-under TBCC exhaust system
t/s Turbojet NPR Ramjet NPR 0 50.66 0 2 50.66 21.00 4 50.66 57.47 8 52.36 55.03 10 52.97 51.57 24 18.06 51.56 25 12.39 51.56 表 2 TBCC组合推进系统模态转换过程时间序列
Table 2. Time series of mode transition process for TBCC system
模态转换时间 模态转换阶段 0~5.0s 冲压发动机通道(冷通流)打开 5.0~12.0s 涡轮发动机关闭加力 12.0~20.0s 涡轮发动机降转 20.0~25.0s 涡轮发动机通道(风车)关闭 -
[1] D'Oriano V, Savino R, Visone M. Aerothermodynamic study of a small hypersonic plane[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(2):471-480. doi: 10.1108/AEAT-06-2015-0151 [2] Wang Z G, Wang Y, Zhang J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology, 2014, 39:31-39. doi: 10.1016/j.ast.2014.08.008 [3] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[C]. The 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany. 2013. [4] Xiang X H, Liu Y, Qian Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[J]. Procedia Engineering, 2015, 99:129-136. doi: 10.1016/j.proeng.2014.12.516 [5] 刘晓波, 罗月培, 曾慧, 等.国外TBCC关键技术及试验设备研究综述[J].燃气涡轮试验与研究, 2016, 29(4):51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011Liu X B, Luo Y P, Zeng H, et al. An overview of key technology and test facility for turbine-based combined cycle propulsion study oversea[J]. Gas Turbine Experiment and Research, 2016, 29(4):51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011 [6] Edwards C L W, Small W J, Weidner J P, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]//Proc of the 13th Aerospace Sciences Meeting. 1975. [7] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[C]//The 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2013: 7238. [8] Zhang M Y, Wang Z X, Liu Z W, et al. Analysis of mode transition performance for a tandem TBCC engine[C]. The 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, USA. 2016. [9] Liu J, Yuan H C, Guo R W. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC) inlet mode transition[J]. Propulsion and Power Research, 2015, 4(3):141-149. doi: 10.1016/j.jppr.2015.07.006 [10] Guo S, Xu J L, Mo J W, et al. Fluid-structure interaction study of the splitter plate in a TBCC exhaust system during mode transition phase[J]. Acta Astronautica. 2015, 112:126-139. doi: 10.1016/j.actaastro.2015.03.021 [11] 花文达, 徐惊雷.三维并联式TBCC发动机排气系统设计与实验[J].航空动力学报, 2018, 33(9):2268-2277. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201809025Hua W D, Xu J L.Design approach and experiment of three-dimensional over/under TBCC exhaust system[J]. Journal of Aerospace Power, 2018, 33(9):2268-2277. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201809025 [12] 牛彦沣, 徐惊雷, 许保成, 等.并联TBCC排气系统流场结构数值模拟及实验研究[J].推进技术, 2017, 38(12):2686-2691. http://d.old.wanfangdata.com.cn/Periodical/tjjs201712006Niu Y F, Xu J L, Xu B C, et al. Numerical and experimental study of over-under TBCC exhaust system flow structure[J]. Journal of Propulsion Technology, 2017, 38(12):2686-2691. http://d.old.wanfangdata.com.cn/Periodical/tjjs201712006 [13] Lv Z, Xu J L, Mo J W. Study of the unsteady mode transition process for an over-under TBCC exhaust system[J]. Acta Astronautica, 2017, 136:259-272. doi: 10.1016/j.actaastro.2017.03.020 [14] Cai Y H, Zhang J D, Wang Z X. Exploring TBCC engine inlet design for Ma=5[J]. Jounal of Northwestern Polytechnical Univercity, 2007, 25(5):615-619. [15] Steelant J. LAPCAT:high-speed propulsion technology[J]. Advances on Propulsion Technology for High-Speed Aircraft, 2008, 12(1):1-38. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214754156/ [16] 隋洪涛.精通CFD动网格工程仿真与案例实战[M].北京:人民邮电出版社, 2013. -