留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封闭空间中不同压力下火焰过孔板加速机理研究

赵健福 周磊 钟力嘉 卫海桥

赵健福, 周磊, 钟力嘉, 等. 封闭空间中不同压力下火焰过孔板加速机理研究[J]. 实验流体力学, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033
引用本文: 赵健福, 周磊, 钟力嘉, 等. 封闭空间中不同压力下火焰过孔板加速机理研究[J]. 实验流体力学, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033
Zhao Jianfu, Zhou Lei, Zhong Lijia, et al. Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033
Citation: Zhao Jianfu, Zhou Lei, Zhong Lijia, et al. Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033

封闭空间中不同压力下火焰过孔板加速机理研究

doi: 10.11729/syltlx20190033
基金项目: 

国家自然科学基金项目 91741119

国家自然科学基金项目 51606133

国家杰出青年科学基金项目 51825603

详细信息
    作者简介:

    赵健福(1992-), 男, 山东枣庄人, 博士研究生。研究方向:封闭空间火焰传播及爆轰燃烧。通信地址:天津市南开区卫津路92号天津大学(300072)。E-mail:zhaojianfu@tju.edu.cn

    通讯作者:

    卫海桥, E-mail: whq@tju.edu.cn

  • 中图分类号: TK417

Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space

  • 摘要: 爆震或超级爆震发生时总会伴随着湍流火焰-冲击波相互作用,对其开展研究是揭示爆震或超级爆震机理的关键,研究火焰加速产生压力波的过程是火焰-压力波相互作用研究的基础性前提。基于自主设计的定容燃烧弹和Converge三维数值模拟方法,对封闭空间中火焰过孔板加速机理及影响因素开展了研究,讨论了初始压力对火焰过孔板加速的影响。依据火焰传播形态与速度,将火焰过孔板加速过程分为3个阶段:层流火焰阶段、射流火焰阶段和湍流火焰阶段。通过分析火焰过孔板过程中的流场情况,发现在火焰未到达孔板前,孔板附近存在强射流,火焰受强射流的驱动而急剧加速;但当火焰穿过孔板之后,火焰锋面前的流场速度沿着远离火焰的方向而逐渐下降,说明开始由火焰驱动未燃气体运动。比较不同压力下的火焰过孔板过程,发现湍流火焰传播速度和缸压振荡均随着初始压力的提高而升高。
  • 图  1  实现火焰-冲击波相互作用的可视化定容燃烧弹

    Figure  1.  Schematic diagram of the experimental setup for the observation of flame acceleration

    图  2  定容燃烧弹几何模型

    Figure  2.  Geometric model for simulation

    图  3  (a) 火焰过孔板加速过程;(b)火焰过孔板加速过程的速度曲线

    Figure  3.  (a) Chronological schlieren images of flame acceleration passing through the perforated plate; (b) Evolution of the flame tip velocity

    图  4  初始压力0.3MPa下火焰过孔板加速过程中的(a)温度分布;(b)流场分布; (c)速度分布

    Figure  4.  Distribution of (a) temperature, (b) flow and (c) velocity when flame passes through the perforated plate under initial pressure of 0.3MPa

    图  5  初始压力0.1和0.5MPa下燃烧室中轴线的温度、速度变化

    Figure  5.  Distribution of temperature and velocity under initial pressure of 0.1 and 0.5MPa

    图  6  初始压力0.1、0.3和0.5MPa下火焰过孔板加速的实验和数值模拟结果(彩色图片为实验结果,黑白图片为数值模拟结果)

    Figure  6.  Comparison of combustion evolution between experiment and simulation under initial pressure of 0.1, 0.3 and 0.5MPa

    图  7  初始压力0.1、0.3和0.5MPa下火焰传播速度的实验和数值模拟结果

    Figure  7.  Comparison of flame tip velocity between experiment and simulation under initial pressure of 0.1, 0.3, 0.5MPa

    图  8  初始压力0.1、0.3和0.5MPa下的缸内压力实验和模拟结果对比

    Figure  8.  Comparison of pressure between experiment and simulation under initial pressure of 0.1, 0.3 and 0.5MPa

    图  9  初始压力0.1、0.3和0.5MPa下的缸内压力和压力振荡

    Figure  9.  Experimental results of pressure and pressure oscillation under initial pressure of 0.1, 0.3 and 0.5MPa

    表  1  实验条件

    Table  1.   Test conditions

    实验条件 数值
    孔板孔径/mm 2,5
    孔板孔隙率/% 12
    初始温度/K 362±3
    初始压力/MPa 0.1, 0.2, 0.3, 0.4, 0.5
    当量比 1
    下载: 导出CSV
  • [1] Hancock D, Fraser N, Jeremy M, et al. A new 3 cylinder 1.2 l advanced downsizing technology demonstrator engine[R]. SAE Technical Paper, 2008-01-0611, 2008.
    [2] Heywood J B. Internal combustion engine fundamentals[M]. New York:Mcgraw-hill, 1988.
    [3] Inoue T, Inoue Y, Ishikawa M. Abnormal combustion in a highly boosted SI engine-the occurrence of super knock[R]. SAE Technical Paper, 2012-01-1141, 2012.
    [4] Attard W P, Toulson E, Watson H, et al. Abnormal combustion including mega knock in a 60% downsized highly turbocharged PFI engine[R]. SAE Technical Paper, 2010-01-1456, 2010.
    [5] Bäuerle B, Hoffmann F, Behrendt F, et al. Detection of hot spots in the end gas of an internal combustion engine using two-dimensional LIF of formaldehyde[J]. Symposium (Internatio-nal) on Combustion, 1994, 25(1):135-141. doi: 10.1016/S0082-0784(06)80637-5
    [6] Kawahara N, Tomita E. Visualization of auto-ignition and pressure wave during knocking in a hydrogen spark-ignition engine[J]. Interna-tional Journal of Hydrogen Energy, 2009, 34(7):3156-3163. doi: 10.1016/j.ijhydene.2009.01.091
    [7] Zahdeh A, Rothenberger P, Nguyen W, et al. Fundamental approach to investigate pre-ignition in boosted SI engines[J]. SAE International Journal of Engines, 2011, 4(1):246-273. doi: 10.4271/2011-01-0340
    [8] Zaccardi J M, Duval L, Pagot A. Development of specific tools for analysis and quantification of pre-ignition in a boosted SI engine[J]. SAE International Journal of Engines, 2009, 2(1):1587-1600. doi: 10.4271/2009-01-1795
    [9] Takeuchi K, Fujimoto K, Hirano S, et al. Investigation of engine oil effect on abnormal combustion in turbocharged direct injection-spark ignition engines[R]. SAE Technical Paper, 2012-01-1615, 2012.
    [10] Qi Y, Wang Z, Wang J, et al. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock[J]. Combustion and Flame, 2015, 162(11):4119-4128. doi: 10.1016/j.combustflame.2015.08.016
    [11] Robert A, Richard S, Colin O, et al. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine[J]. Combustion and Flame, 2015, 162(7):2788-2807. doi: 10.1016/j.combustflame.2015.04.010
    [12] Luo X, Teng H, Hu T, et al. An experimental investigation on low speed pre-ignition in a highly boosted gasoline direct injection engine[J]. SAE International Journal of Engines, 2015, 8(2):520-528. doi: 10.4271/2015-01-0758
    [13] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [14] Oppenheim A K, Soloukhin R I. Experiments in gasdynamics of explosions[J]. Annual Review of Fluid Mechanics, 1973, 5(1):31-58. doi: 10.1146/annurev.fl.05.010173.000335
    [15] Lee J H S, Moen I O. The mechanism of transition from deflagration to detonation in vapor cloud explosions[J]. Progress in Energy & Combustion Science, 1980, 6(4):359-389. https://www.sciencedirect.com/science/article/pii/0360128580900118
    [16] Shepherd J E, Lee J H S. On the transition from deflagration to detonation[M]. New York:Springer, 1992.
    [17] Gelfand B E, Frolov S M, Nettleton M A. Gaseous detonations-A selective review[J]. Progress in Energy & Combustion Science, 1991, 17(4):327-371. https://www.sciencedirect.com/science/article/pii/036012859190007A
    [18] Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion and Flame, 2007, 148(1-2):4-47. doi: 10.1016/j.combustflame.2006.07.010
    [19] Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010
    [20] Dorofeev S B. Flame acceleration and explosion safety applica-tions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2161-2175. https://www.sciencedirect.com/science/article/pii/S1540748910003925
    [21] Zipf R K, Gamezo V N, Mohamed K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014, 161(8):2165-2176. doi: 10.1016/j.combustflame.2014.02.002
    [22] Maeda S, Minami S, Okamoto D, et al. Visualization of deflagration-to-detonation transitions in a channel with repeated obstacles using a hydrogen-oxygen mixture[J]. Shock Waves, 2016, 26(5):573-586. doi: 10.1007/s00193-016-0660-1
    [23] Goodwin G B, Houim R W, Oran E S. Effect of decreasing blockage ratio on DDT in small channels with obstacles[J]. Combustion and Flame, 2016, 173:16-26. doi: 10.1016/j.combustflame.2016.07.029
    [24] Shchelkin K I. Influence of tube roughness on the formation and detonation propagation in gas[J]. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1940, 10(7):823-827.
    [25] Zeldovich Y B. On the theory on transition to detonation in gases[J]. Zhurnal Tekhnicheskoi Fiziki, 1947, 17(1):3-26.
    [26] Kuznetsov M, Alekseev V, Matsukov I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves, 2005, 14(3):205-215. doi: 10.1007/s00193-005-0265-6
    [27] Ciccarelli G, Fowler C J, bardon M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves, 2005, 14(3):161-166. doi: 10.1007/s00193-005-0259-4
    [28] Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion:challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672. doi: 10.1016/j.pecs.2004.05.001
    [29] Johansen C, Ciccarelli G. Characterization of the flow field ahead of a flame propagating in an obstructed channel[C]//Proceedings of the 21st colloquium on the dynamics of explosions and reactive systems. 2007.
    [30] Frolov S M, Semenov I V, Utkin P S, et al. Enhancement of shock-to-detonation transition in channels with regular shaped obstacles[C]//Proceedings of 21st ICDERS. 2007.
    [31] Gamezo V N, Ogawa T, Oran E S. Effect of obstacle spacing on flame acceleration and DDT in obstructed channels[C]//Proceedings of 21st ICDERS. 2007.
    [32] Bychkov V, Valiev D, Eriksson L E. Physical mechanism of ultrafast flame acceleration[J]. Physical Review Letters, 2008, 101(16):164501. doi: 10.1103/PhysRevLett.101.164501
    [33] Petchenko A, Bychkov V, Akkerman V Y, et al. Violent folding of a flame front in a flame-acoustic resonance[J]. Physical Review Letters, 2006, 97(16):164501. doi: 10.1103/PhysRevLett.97.164501
    [34] Brouillette M. The richtmyer-meshkov instability[J]. Fluid Mechanics, 2002, 34(34):445-468. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d14d4036fc1bbf9f6fbac10be75a916d
    [35] Xiao H H, Houim R W, Oran E S. Formation and evolution of distorted tulip flames[J]. Combustion and Flame, 2015, 162(11):4084-4101. doi: 10.1016/j.combustflame.2015.08.020
    [36] Xiao H H, Makarov D, Sun J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame, 2012, 159(4):1523-1538. doi: 10.1016/j.combustflame.2011.12.003
    [37] Valiev D M, Akkerman V, Kuznetsov M, et al. Influence of gas compression on flame acceleration in the early stage of burning in tubes[J]. Combustion and Flame, 2013, 160(1):97-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd4c28bbd91f51263926de92f0b9bcca
    [38] Yoshizawa A, Horiuti K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54:2834-2839. doi: 10.1143/JPSJ.54.2834
    [39] Menon S, Calhoon W H. Subgrid mixing and molecular transport modeling in a reacting shear layer[J]. Symposium (International) on Combustion, 1996, 26:59-66. doi: 10.1016/S0082-0784(96)80200-1
    [40] Bradley D, Harper C M. The development of instabilities in laminar explosion flames[J]. Combustion and Flame, 1994, 99(3-4):562-572. doi: 10.1016/0010-2180(94)90049-3
    [41] Chaudhuri S, Wu F J, Zhu D L, et al. Flame speed and self-similar propagation of expanding turbulent premixed flames[J]. Physical Review Letters, 2012, 108(4):44503. doi: 10.1103/PhysRevLett.108.044503
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  86
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-06-09
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日