Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel
-
摘要: 针对高焓电弧风洞内部流动的热化学非平衡效应及气体组分和振动能量冻结效应导致的试验数据外推困难问题,基于高焓风洞喷管/试验段/试验模型一体化数值模拟的思路,通过数值求解三维热化学非平衡Navier-Stokes方程,开展了FD-15高焓电弧风洞典型运行状态下流场的数值模拟,与典型试验状态的气动热数据进行了对比验证,研究了试验数据外推飞行条件的方法及有效性问题,分析了提高驻室总压对试验数据外推的影响。研究表明:(1)风洞试验段来流离解度高,热化学非平衡效应及其冻结现象严重;(2)热流校核试验测量数据位于一体化数值模拟的完全催化热流和非催化热流之间,分布合理,验证了计算方法和程序的正确性;(3)试验模型安放位置对模型表面压力和热流存在影响,模型与喷管出口的距离越大,模型表面压力和热流越低;(4)当驻室总压较低时,通过双尺度模拟准则(模拟飞行条件总焓和双尺度参数ρ∞L)外推热流失效,使用部分模拟准则(模拟飞行条件总焓和驻点压力)外推热流也会出现较大差异,在非催化条件下这一现象更加明显;(5)当驻室总压较高时,使用双尺度模拟准则或部分模拟准则外推飞行条件,产生的热流差异明显减小。Abstract: Due to the thermochemical non-equilibrium effects and the freezing of species mass fractions and vibration energy, it is difficult to determine the flight conditions based on the arc-jet tunnel test data by extrapolation. In consideration of this problem and based on the idea of the integrated numerical simulation of the nozzle/test section/test model flow field, the numerical simulation of FD-15 arc-jet tunnel test under the typical operating condition is conducted by solving three dimensional Navier-Stokes equations of the thermochemical non-equilibrium flow. Based on the simulation result, the comparison between the numerical simulation and the tunnel test result is presented, and the problem of extrapolating the tunnel test data to flight as well as the influence of the reservoir pressure on extrapolation are discussed. The result shows:(1) the inflow in the test section has a high level of dissociation, and thus the thermochemical non-equilibrium effect is severe. (2) The tunnel test heat flux result is in between the full catalytic heat flux and non-catalytic heat flux of the integrated numerical simulation, which is reasonable and indicates the validity of the computation method and program. (3)The surface pressure and the heat transfer can be influenced by the installation position of the test model. The surface pressure and the heat transfer flux decrease when the distance from the test model to the nozzle exit increases. (4)When the reservoir pressure is low, extrapolation of the tunnel test heat flux data to the flight conditions by binary scaling (keeping total enthalpy and ρ∞L the same) is invalid, and the tunnel test heat flux data also shows discrepancies in extrapolation to flight conditions by partial simulation (keeping total enthalpy and stagnation pressure the same), especially under non-catalytic condition. (5)When the reservoir pressure increases, discrepancies in extrapolation of the tunnel test data are significantly reduced with both binary scaling and partial simulation methods.
-
表 1 风洞试验运行状态
Table 1. Tunnel test conditions
Condition H0/(MJ·kg-1) T0/K p0/MPa G/(g·s-1) 1 9.8 5070 0.27 95 2 17.5 6783 0.39 108 表 2 风洞及飞行来流参数(部分模拟准则)
Table 2. Inflow parameters of tunnel test and flight (partial simulation)
Parameter Tunnel Flight H0/(MJ·kg-1) 17.5 17.5 ps/Pa 5067 5102 Rn/m 0.06 0.06 V/(m·s-1) 4335 5900 p/Pa 56.8 10.3 T/K 509 232 TV/K 4584 232 cN2 0.6572 0.7670 cO2 7.3900×10-5 0.2330 cNO 5.5600×10-6 0 cN 0.1090 0 cO 0.2340 0 表 3 风洞及飞行来流参数(双尺度模拟准则)
Table 3. Inflow parameters of tunnel test and flight (binary scaling simulation)
Parameter Tunnel Flight H0/(MJ·kg-1) 17.5 17.5 ρ∞L 3.48×10-5 3.48×10-5 ρ∞/(kg·m-3) 5.80×10-4 1.93×10-4 Rn/m 0.06 0.18 V/(m·s-1) 4335 5900 p/Pa 56.800 6.175 T/K 509 223 TV/K 4584 223 cN2 0.6572 0.7670 cO2 7.3900×10-5 0.2330 cNO 5.5600×10-6 0 cN 0.1090 0 cO 0.2340 0 表 4 风洞及飞行来流条件(p0=5MPa,部分模拟准则)
Table 4. Inflow parameters of tunnel test and flight (p0=5MPa, partial simulation)
Parameter Tunnel Flight H0/(MJ·kg-1) 17.5 17.5 ps/Pa 40739 41008 Rn/m 0.06 0.06 V/(m·s-1) 5052 5900 p/Pa 542.00 96.13 T/K 939 271 TV/K 3740 271 cN2 0.7620 0.7670 cO2 0.0100 0.2330 cNO 0.1091 0 cN 1.2100×10-6 0 cO 0.2171 0 表 5 风洞及飞行来流条件(p0=5MPa,双尺度模拟准则)
Table 5. Inflow parameters of tunnel test and flight (p0=5MPa, binary scaling simulation)
Parameter Tunnel Flight H0/(MJ·kg-1) 17.5 17.5 ρ∞L 1.005×10-4 1.005×10-4 ρ∞/(kg·m-3) 5.80×10-4 1.93×10-4 Rn/m 0.06 0.18 V/(m·s-1) 5052 5900 p/Pa 542.0 41.7 T/K 939 260 TV/K 3740 260 cN2 0.7620 0.7670 cO2 0.0100 0.2330 cNO 0.1091 0 cN 1.2100×10-6 0 cO 0.2171 0 -
[1] 董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025 [2] 丁明松, 董维中, 高铁锁, 等.局部催化特性差异对气动热环境影响的计算分析[J].航空学报, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005 [3] 丁明松, 董维中, 高铁锁, 等.传感器催化特性差异对气动热影响的计算分析[J].宇航学报, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence on aero-thermal environments caused by catalytic property distinction of heat flux sensor[J]. Journal of Astronautics, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014 [4] Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Astronautics and Aeronautics, 2002. [5] 汪球, 赵伟, 滕宏辉, 等.高焓激波风洞喷管流场非平衡特性研究[J].空气动力学学报, 2015, 33(1):66-71. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011Wang Q, Zhao W, Teng H H, et al. Numerical simulation of none-equilibrium characteristics of high enthalpy shock tunnel:nozzle flow[J]. Acta Aerodynamica Sinica, 2015, 33(1):245-254. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011 [6] 张涵信.真实气体流动的相似规律[J].空气动力学学报, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htmZhang H X. The similarity law for real gas flow[J]. Acta Aerodynamica Sinica, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm [7] 董维中, 乐嘉陵, 高铁锁.钝体标模高焓风洞试验和飞行试验相关性的数值分析[J].流体力学实验与测量, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001Dong W Z, Le J L, Gao T S. Numerical analysis for correlation of standard model testing in high enthalpy facility and flight test[J]. Experimental Measurements in Fluid Mechanics, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001 [8] 董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析[D].北京: 北京航空航天大学, 1996.Dong W Z. Numerical simulation and analysis of thermal-chemical non-equilibrium effects at hypersonic flows[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1996. [9] 曾明, 林贞彬, 柳军, 等.非平衡模拟参数ρ∞L有效性的数值分析[J].力学学报, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005Zeng M, Lin Z B, Liu J, et al. Numerical analysis of the validity of binary scaling parameter ρ∞Lin nonequilibrium flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005 [10] Gokcen T. Effects of flow field nonequilibrium on convective heat transfer to a blunt body[R]. AIAA-96-0352, 1996. [11] 袁军娅, 蔡国飙, 杨红亮, 等.高焓非平衡气动热环境的试验模拟及影响[J].实验流体力学, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008Yuan J Y, Cai G B, Yang H L, et al. Test simulation of heat environment in high enthalpy nonequilibrium flow and effects[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008 [12] Ishihara T, Ogino Y, Ohnishi N, et al. Numerical study on anomalous heating over blunt-body in free-piston shock tunnel HIEST[R]. AIAA-2013-0909, 2013. [13] Ishihara T, Aizawa R, Ogino Y, et al. Numerical analysis on aerothermodynamic characteristics of blunt-nosed cone in free-piston shock tunnel HIEST[R]. AIAA-2014-1390, 2014. [14] Holden M S, Wadhams T P, MacLean M, et al. Experiment research analysis in supersonic and hypervelocity flows in the LENS shock tunnels and expansion tunnel[R]. AIAA-2015-3660, 2015. [15] Vasilevskii E B, Zhestkov B E, Sakharov V I. Numerical simulation and experiment in the induction plasmatron of the VAT-104 wind tunnel[J]. TsAGI Science Journal, 2016, 47(5):457-474. doi: 10.1615/TsAGISciJ.v47.i5 [16] Clemente M D, Trifoni E, Marini M. Numerical and experimental analyses on re-entry vehicle control surface[R]. AIAA-2013-5331, 2013. [17] 曾明.高焓风洞流场测量的数值重建和非平衡效应的数值分析[D].北京: 中国科学院力学研究所, 2006.Zeng M. Numerical rebuilding of free-stream measurement and analysis of none-equilibrium effects in high enthalpy tunnel[D]. Beijing: Institute of Mechanics, Chinese Academy of Science, 2007. [18] 曾明, 林贞彬, 郭大华, 等.高焓激波风洞自由流参数的数值重建[J].空气动力学学报, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017Zeng M, Lin Z B, Guo D H, et al. Numerical rebuilding of free stream measurement in the high enthalpy shock tunnel[J]. Acta Aerodynamica Sinica, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017 [19] Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel: L3K[R]. AIAA-2011-3777, 2011. [20] 董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学学报, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010Dong W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010 [21] Park C. Non-equilibrium hypersonic aerothermodynamics[M]. New York:John Wiley &Sons, 1990. [22] Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for 11-species air model for chemical and thermal non-equilibrium calculation to 30000K[R]. NASA-TM-101528, 1989. [23] Dunn M G, Kang S W. Theoretical and experimental studies of reentry plasmas[R]. NASA-CR-2232, 1973. [24] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989. [25] Fay J A, Riddle, F R. Theory of stagnation point heat transfer in dissociatedair[J]. Journal of the Aeronautical Science, 1958, 25(2):73-85. http://www.ams.org/mathscinet-getitem?mr=94043 [26] Goulard R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 25(2):733-745. http://cn.bing.com/academic/profile?id=de84553838689feae13d10149cae27ad&encoded=0&v=paper_preview&mkt=zh-cn [27] Muylaert J, Walpot L, Hauser J, et al. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight[R]. AIAA-92-3905, 1992. -