留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高焓电弧风洞试验热化学非平衡流场数值模拟

傅杨奥骁 董维中 丁明松 刘庆宗 高铁锁 江涛

傅杨奥骁, 董维中, 丁明松, 等. 高焓电弧风洞试验热化学非平衡流场数值模拟[J]. 实验流体力学, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138
引用本文: 傅杨奥骁, 董维中, 丁明松, 等. 高焓电弧风洞试验热化学非平衡流场数值模拟[J]. 实验流体力学, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138
Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138
Citation: Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138

高焓电弧风洞试验热化学非平衡流场数值模拟

doi: 10.11729/syltlx20180138
详细信息
    作者简介:

    傅杨奥骁1994-), 男, 四川南充人, 硕士研究生。研究方向:计算高温气体动力学。通信地址:四川省绵阳市二环路南段6号13信箱9分箱(621000)。E-mail:fyax123@163.com

    通讯作者:

    董维中, E-mail:dwz1966@163.com

  • 中图分类号: O411.3;V211.751

Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel

  • 摘要: 针对高焓电弧风洞内部流动的热化学非平衡效应及气体组分和振动能量冻结效应导致的试验数据外推困难问题,基于高焓风洞喷管/试验段/试验模型一体化数值模拟的思路,通过数值求解三维热化学非平衡Navier-Stokes方程,开展了FD-15高焓电弧风洞典型运行状态下流场的数值模拟,与典型试验状态的气动热数据进行了对比验证,研究了试验数据外推飞行条件的方法及有效性问题,分析了提高驻室总压对试验数据外推的影响。研究表明:(1)风洞试验段来流离解度高,热化学非平衡效应及其冻结现象严重;(2)热流校核试验测量数据位于一体化数值模拟的完全催化热流和非催化热流之间,分布合理,验证了计算方法和程序的正确性;(3)试验模型安放位置对模型表面压力和热流存在影响,模型与喷管出口的距离越大,模型表面压力和热流越低;(4)当驻室总压较低时,通过双尺度模拟准则(模拟飞行条件总焓和双尺度参数ρL)外推热流失效,使用部分模拟准则(模拟飞行条件总焓和驻点压力)外推热流也会出现较大差异,在非催化条件下这一现象更加明显;(5)当驻室总压较高时,使用双尺度模拟准则或部分模拟准则外推飞行条件,产生的热流差异明显减小。
  • 图  1  FD-15电弧风洞结构示意图

    Figure  1.  Sketch of FD-15 arc-jet tunnel

    图  2  一体化计算域示意图

    Figure  2.  Sketch of integrated computational domain

    图  3  平头模型示意图

    Figure  3.  Sketch of cylinder test model

    图  4  流场参数分布云图

    Figure  4.  Parameter distribution contour of flow field

    图  5  沿模型对称轴线上的参数分布(NCW条件)

    Figure  5.  Parameter distribution along the axis of test model (NCW)

    图  6  表面热流分布对比

    Figure  6.  Comparison of surface heat flux

    图  7  球头模型示意图

    Figure  7.  Sketch of sphere test model

    图  8  流场马赫数、温度分布云图对比

    Figure  8.  Comparison of Mach number and temperature contour

    图  9  模型驻点线上的参数分布(NCW条件)

    Figure  9.  Parameter distribution along stagnation line of test model (NCW)

    图  10  模型表面热流分布对比

    Figure  10.  Comparison of heat flux on model surface

    图  11  模型驻点线上流场参数分布(NCW条件)

    Figure  11.  Parameters distribution along stagnation line of test model (NCW)

    图  12  模型表面热流分布对比

    Figure  12.  Comparison of heat flux on model surface

    图  13  模型驻点边界层内的总焓分布

    Figure  13.  Total enthalpy distribution in the boundary layer of stagnation point

    图  14  模型驻点线上流场参数分布(NCW条件)

    Figure  14.  Parameters distribution along stagnation line of test model (NCW)

    图  15  模型表面热流分布(尺度为3)

    Figure  15.  Heat flux distribution on model surface (by scale 3)

    图  16  模型表面Stanton数分布

    Figure  16.  Stanton number distribution on model surface

    图  17  喷管出口参数随驻室压力变化关系

    Figure  17.  Relationship between reservoir pressure and parameters at nozzle exit

    图  18  模型驻点线上流场参数分布(p0=5MPa,NCW条件)

    Figure  18.  Parameters distribution along stagnation line of test model (p0=5MPa, NCW)

    图  19  模型表面热流分布对比(p0=5MPa)

    Figure  19.  Comparison of heat flux on model surface (p0=5MPa)

    图  20  模型驻点边界层内的总焓分布(p0=5MPa)

    Figure  20.  Total enthalpy distribution in the boundary layer of stagnation point (p0=5MPa)

    图  21  模型表面热流分布(尺度为3,p0=5MPa)

    Figure  21.  Heat flux distribution on model surface (by scale 3, p0=5MPa)

    图  22  模型表面Stanton数分布(p0=5MPa)

    Figure  22.  Stanton number distribution on model surface (p0=5MPa)

    表  1  风洞试验运行状态

    Table  1.   Tunnel test conditions

    Condition H0/(MJ·kg-1) T0/K p0/MPa G/(g·s-1)
    1 9.8 5070 0.27 95
    2 17.5 6783 0.39 108
    下载: 导出CSV

    表  2  风洞及飞行来流参数(部分模拟准则)

    Table  2.   Inflow parameters of tunnel test and flight (partial simulation)

    Parameter Tunnel Flight
    H0/(MJ·kg-1) 17.5 17.5
    ps/Pa 5067 5102
    Rn/m 0.06 0.06
    V/(m·s-1) 4335 5900
    p/Pa 56.8 10.3
    T/K 509 232
    TV/K 4584 232
    cN2 0.6572 0.7670
    cO2 7.3900×10-5 0.2330
    cNO 5.5600×10-6 0
    cN 0.1090 0
    cO 0.2340 0
    下载: 导出CSV

    表  3  风洞及飞行来流参数(双尺度模拟准则)

    Table  3.   Inflow parameters of tunnel test and flight (binary scaling simulation)

    Parameter Tunnel Flight
    H0/(MJ·kg-1) 17.5 17.5
    ρL 3.48×10-5 3.48×10-5
    ρ/(kg·m-3) 5.80×10-4 1.93×10-4
    Rn/m 0.06 0.18
    V/(m·s-1) 4335 5900
    p/Pa 56.800 6.175
    T/K 509 223
    TV/K 4584 223
    cN2 0.6572 0.7670
    cO2 7.3900×10-5 0.2330
    cNO 5.5600×10-6 0
    cN 0.1090 0
    cO 0.2340 0
    下载: 导出CSV

    表  4  风洞及飞行来流条件(p0=5MPa,部分模拟准则)

    Table  4.   Inflow parameters of tunnel test and flight (p0=5MPa, partial simulation)

    Parameter Tunnel Flight
    H0/(MJ·kg-1) 17.5 17.5
    ps/Pa 40739 41008
    Rn/m 0.06 0.06
    V/(m·s-1) 5052 5900
    p/Pa 542.00 96.13
    T/K 939 271
    TV/K 3740 271
    cN2 0.7620 0.7670
    cO2 0.0100 0.2330
    cNO 0.1091 0
    cN 1.2100×10-6 0
    cO 0.2171 0
    下载: 导出CSV

    表  5  风洞及飞行来流条件(p0=5MPa,双尺度模拟准则)

    Table  5.   Inflow parameters of tunnel test and flight (p0=5MPa, binary scaling simulation)

    Parameter Tunnel Flight
    H0/(MJ·kg-1) 17.5 17.5
    ρL 1.005×10-4 1.005×10-4
    ρ/(kg·m-3) 5.80×10-4 1.93×10-4
    Rn/m 0.06 0.18
    V/(m·s-1) 5052 5900
    p/Pa 542.0 41.7
    T/K 939 260
    TV/K 3740 260
    cN2 0.7620 0.7670
    cO2 0.0100 0.2330
    cNO 0.1091 0
    cN 1.2100×10-6 0
    cO 0.2171 0
    下载: 导出CSV
  • [1] 董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
    [2] 丁明松, 董维中, 高铁锁, 等.局部催化特性差异对气动热环境影响的计算分析[J].航空学报, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005
    [3] 丁明松, 董维中, 高铁锁, 等.传感器催化特性差异对气动热影响的计算分析[J].宇航学报, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence on aero-thermal environments caused by catalytic property distinction of heat flux sensor[J]. Journal of Astronautics, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014
    [4] Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Astronautics and Aeronautics, 2002.
    [5] 汪球, 赵伟, 滕宏辉, 等.高焓激波风洞喷管流场非平衡特性研究[J].空气动力学学报, 2015, 33(1):66-71. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011

    Wang Q, Zhao W, Teng H H, et al. Numerical simulation of none-equilibrium characteristics of high enthalpy shock tunnel:nozzle flow[J]. Acta Aerodynamica Sinica, 2015, 33(1):245-254. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011
    [6] 张涵信.真实气体流动的相似规律[J].空气动力学学报, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm

    Zhang H X. The similarity law for real gas flow[J]. Acta Aerodynamica Sinica, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm
    [7] 董维中, 乐嘉陵, 高铁锁.钝体标模高焓风洞试验和飞行试验相关性的数值分析[J].流体力学实验与测量, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001

    Dong W Z, Le J L, Gao T S. Numerical analysis for correlation of standard model testing in high enthalpy facility and flight test[J]. Experimental Measurements in Fluid Mechanics, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001
    [8] 董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析[D].北京: 北京航空航天大学, 1996.

    Dong W Z. Numerical simulation and analysis of thermal-chemical non-equilibrium effects at hypersonic flows[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1996.
    [9] 曾明, 林贞彬, 柳军, 等.非平衡模拟参数ρL有效性的数值分析[J].力学学报, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005

    Zeng M, Lin Z B, Liu J, et al. Numerical analysis of the validity of binary scaling parameter ρLin nonequilibrium flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005
    [10] Gokcen T. Effects of flow field nonequilibrium on convective heat transfer to a blunt body[R]. AIAA-96-0352, 1996.
    [11] 袁军娅, 蔡国飙, 杨红亮, 等.高焓非平衡气动热环境的试验模拟及影响[J].实验流体力学, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008

    Yuan J Y, Cai G B, Yang H L, et al. Test simulation of heat environment in high enthalpy nonequilibrium flow and effects[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008
    [12] Ishihara T, Ogino Y, Ohnishi N, et al. Numerical study on anomalous heating over blunt-body in free-piston shock tunnel HIEST[R]. AIAA-2013-0909, 2013.
    [13] Ishihara T, Aizawa R, Ogino Y, et al. Numerical analysis on aerothermodynamic characteristics of blunt-nosed cone in free-piston shock tunnel HIEST[R]. AIAA-2014-1390, 2014.
    [14] Holden M S, Wadhams T P, MacLean M, et al. Experiment research analysis in supersonic and hypervelocity flows in the LENS shock tunnels and expansion tunnel[R]. AIAA-2015-3660, 2015.
    [15] Vasilevskii E B, Zhestkov B E, Sakharov V I. Numerical simulation and experiment in the induction plasmatron of the VAT-104 wind tunnel[J]. TsAGI Science Journal, 2016, 47(5):457-474. doi: 10.1615/TsAGISciJ.v47.i5
    [16] Clemente M D, Trifoni E, Marini M. Numerical and experimental analyses on re-entry vehicle control surface[R]. AIAA-2013-5331, 2013.
    [17] 曾明.高焓风洞流场测量的数值重建和非平衡效应的数值分析[D].北京: 中国科学院力学研究所, 2006.

    Zeng M. Numerical rebuilding of free-stream measurement and analysis of none-equilibrium effects in high enthalpy tunnel[D]. Beijing: Institute of Mechanics, Chinese Academy of Science, 2007.
    [18] 曾明, 林贞彬, 郭大华, 等.高焓激波风洞自由流参数的数值重建[J].空气动力学学报, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017

    Zeng M, Lin Z B, Guo D H, et al. Numerical rebuilding of free stream measurement in the high enthalpy shock tunnel[J]. Acta Aerodynamica Sinica, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017
    [19] Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel: L3K[R]. AIAA-2011-3777, 2011.
    [20] 董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学学报, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010

    Dong W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010
    [21] Park C. Non-equilibrium hypersonic aerothermodynamics[M]. New York:John Wiley &Sons, 1990.
    [22] Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for 11-species air model for chemical and thermal non-equilibrium calculation to 30000K[R]. NASA-TM-101528, 1989.
    [23] Dunn M G, Kang S W. Theoretical and experimental studies of reentry plasmas[R]. NASA-CR-2232, 1973.
    [24] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
    [25] Fay J A, Riddle, F R. Theory of stagnation point heat transfer in dissociatedair[J]. Journal of the Aeronautical Science, 1958, 25(2):73-85. http://www.ams.org/mathscinet-getitem?mr=94043
    [26] Goulard R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 25(2):733-745. http://cn.bing.com/academic/profile?id=de84553838689feae13d10149cae27ad&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Muylaert J, Walpot L, Hauser J, et al. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight[R]. AIAA-92-3905, 1992.
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  132
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2019-03-06
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日