留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机极端条件下液雾自燃特性研究进展

高伟 张弛 贺春龙 林宇震

高伟, 张弛, 贺春龙, 等. 航空发动机极端条件下液雾自燃特性研究进展[J]. 实验流体力学, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120
引用本文: 高伟, 张弛, 贺春龙, 等. 航空发动机极端条件下液雾自燃特性研究进展[J]. 实验流体力学, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120
Gao Wei, Zhang Chi, He Chunlong, et al. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120
Citation: Gao Wei, Zhang Chi, He Chunlong, et al. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120

航空发动机极端条件下液雾自燃特性研究进展

doi: 10.11729/syltlx20180120
基金项目: 

国家自然科学基金重大研究计划项目 91641109

详细信息
    作者简介:

    高伟(1981-), 男, 陕西汉中人, 博士后.研究方向:航空航空发动机低排放燃烧技术.通信地址:北京市海淀区学院路37号北京航空航天大学热动力工程研究所(100191). E-mail:buaa_gaowei@163.com

    通讯作者:

    张弛,E-mail:zhangchi@buaa.edu.cn

  • 中图分类号: V231.2

Progress on spray autoignition under the extreme conditions in aero-engines

  • 摘要: 贫油预混预蒸发(LPP)燃烧是目前最先进的民用航空发动机低排放燃烧技术,但在预混过程中面临的自燃与回火等风险,已成为制约其发展的瓶颈问题。在航空发动机燃烧室的高温(最高1000K)、高压(最高6MPa)来流极端条件下,预混预蒸发段内自燃属于受限空间内的液雾自燃,本文对与液雾自燃相关的实验研究进行回顾和分析。首先,描述民用航空发动机LPP燃烧室内的液雾自燃过程,分析液雾自燃的影响因素和特点,指出液雾自燃的重点研究方向;其次,对与液雾自燃密切相关的化学自燃研究进行简要综述,总结各物理参数对化学自燃的影响规律;最后,重点分析液雾自燃的实验研究现状,展示航空发动机极端条件下的液雾自燃随机性研究进展,探讨液雾自燃研究面临的问题和后续发展趋势。
  • 图  1  中心分级低排放燃烧室内液雾自燃过程

    Figure  1.  Spray autoignition in internally-staged low emission combustor

    图  2  激波管

    Figure  2.  Schematic of shock tube

    图  3  快速压缩机

    Figure  3.  Schematic of rapid compression machine

    图  4  流动反应器

    Figure  4.  Schematic of flow reactor

    图  5  液雾自燃测试方法

    Figure  5.  Test method of spray autoigniton

    图  6  液雾定容弹结构示意图[65]

    Figure  6.  Combustion chamber schematic[65]

    图  7  IQT测试结果[65]

    Figure  7.  Test result of IQT[65]

    图  8  NASA Lewis研究中心流动反应器[76]

    Figure  8.  NASA Lewis flow reactor[76]

    图  9  剑桥大学流动反应器[83]

    Figure  9.  Cambridge University flow reactor[83]

    图  10  佐治亚流动反应器[85]

    Figure  10.  Georgia flow reactor[85]

    图  11  沈阳发动机设计研究所流动反应器[86]

    Figure  11.  Shenyang Engine Design Institute flow reactor[86]

    图  12  液雾自燃实验系统简图[87]

    Figure  12.  Experimental system of spray autoignition[87]

    图  13  北航流动反应器结构图

    Figure  13.  Structure of BUAA flow reactor

    图  14  液雾自燃特性测试原理及点火延迟时间定义

    Figure  14.  Test principle and the definition of ADT

    图  15  ADT频数分布曲线图

    Figure  15.  Probability of distribution of ADT

    图  16  火核移动过程

    Figure  16.  Transition process of autoignition kernels

    表  1  燃料的化学点火延迟时间关系式

    Table  1.   Chemical ignition delay time formulas of fuel

    Serial number Empirical correlations References
    1 τ=A×φm×pn×exp (E/RT) [30, 36, 50, 59]
    2 τ=A×[Fuel]a×[Oxygen]b×exp(E/RT) [28, 30, 45, 56, 60]
    3 τ=A×pn×exp(E/RT) [36, 61]
    4 τ=A×exp(E/RT) [32, 35]
    5 τ=A×pn×[Fuel]a×[Oxygen]b×exp(E/RT) [37, 56]
    下载: 导出CSV

    表  2  典型航空燃料及其替代燃料的DCN

    Table  2.   DCN value of typical aviation fuel and alternative fuel

    Fuel DCN(IQT) DCN(FIT)
    Jet A(POST 4658) 47.1[71] 49.35[72]
    JP-8(POST 6169) 47.3[73]
    S-8(POSF 4734) 58.7[74] 66.50[72]
    Shell GTL(POSF 5172) 59.1[72] 64.69[72]
    Shell SPK(POSF 5729) 58.4[73]
    Sasol IPK(POSF 5642) 31.3[58] 33.46[72]
    Sasol IPK(POSF 7629) 31.1[75]
    R-8(POST 5469) 66.27[72]
    CHRJ(POSF 6152) 53.9[75] 60.70[72]
    CHRJ(POSF 7720) 58.9[73]
    THRJ(POSF 6308) 58.1[73] 65.85[72]
    50:50 JP-8(POST 6169)/CHRJ(POSF 6152) 49.22[75]
    50:50 JP-8(POST 6169)/THRJ(POSF 6308) 49.82[75]
    注:[]中的数值为文后参考文献序号。
    下载: 导出CSV

    表  3  液雾自燃点火延迟时间关系式

    Table  3.   Formulas of spray autoignition delay time

    Serial number Empirical correlations References
    1 τ=A×pn×exp(E/RT) [76, 77]
    2 τ=A×φm×pn×exp(E/RT) [82]
    3 τ=A×exp(E/RT) [85]
    下载: 导出CSV

    表  4  流动反应器液雾自燃实验研究

    Table  4.   Experimental researches of spray auto-ignition in flow reactors

    Test rig name Year Fuel Pressure/MPa Temperature/K Equivalence ratio Velocity/(m·s-1) Measurement method
    NASA Lewis flow reactor[76] 1977 Jet A 0.54~2.50 550~700 0.3~0.7 / /
    NASA Lewis flow reactor[77] 1983 Jet A 2.5 600~700 0.4~0.9 20~115 High speed imaging
    Lucas gas turbine flow reactor[78] 1969 Diesel, kerosene, gasoline 3.0~6.0 770~980 / 21 /
    Karlsruhe flow reactor[80] 2008 Jet A, diesel, n-heptane 1.0 1123 0.55~0.65 35~120 PLIF
    Karlsruhe flow reactor[81] 2007 Jet A, kerosene, heptane 0.8 750~1100 0.55~0.65 35~120 PLIF
    Qinetiq gas turbine flow reactor[82] 2008 Diesel, biodiesel 1.10~1.35 800~850 0.85~1.25 26~32 Fiber-optic sensors
    Cambridge flow reactor[83] 2012 Ethanol, n-heptane, biodiesel 0.1 1030~1070 / 8.5~12.6 High speed imaging
    Shenyang engine design institute flow reactor[84] 2007 kerosene / 1200~1250 / / Photography
    Georgia flow reactor[86] 2015 Jet A 0.1 1000~1400 / 25~30 High speed imaging
    BUAA flow reactor[87] 2016 RP-3, n-decane 1.7~2.3 785~920 0.2~0.4 50 Laser,PMT, High speed imaging
    下载: 导出CSV
  • [1] Lefebvre A, Balla D R, Bahr D W. Gas turbine combustion:alternative fuels and emissions[M]. Boca Raton, FL:CRC Press, 2010.
    [2] 林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.

    Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing:National Defense Industry Press, 2008.
    [3] International Civil Aviation Organization. ICAO environmental report 2010: aviation and climate change[S]. Montreal: ICAO Environment Branch, 2010.
    [4] 张驰, 林宇震, 徐华胜, 等.民用航空发动机低排放燃烧室技术发展现状及水平[J].航空学报, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004

    Zhang C, Lin Y Z, Xu H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004
    [5] Imamura A, Yoshida M, Kawano M, et al. Research and development of a LPP combustor with swirling flow for low NOx[R]. AIAA-2001-3311, 2001.
    [6] Gokulakrishnan P, Ramotowski M J, Gaines G, et al. Experimental study of NOx formation in lean, premixed, prevapo-rized combustion of fuel oils at elevated pressures[R]. ASME GT2007-27552, 2007.
    [7] Foust M J, Thomsen D, Stickles R, et al. Development of the GE aviation low emissions ATPS combustor for next generation aircraft engines[R]. AIAA-2012-0936, 2012. https://www.researchgate.net/publication/271374955_Development_of_the_GE_Aviation_Low_Emissions_TAPS_Combustor_for_Next_Generation_Aircraft_Engines
    [8] Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011.
    [9] Fu Z B, Lin Y Z, Li J B, et al. Experimental investigation on ignition performance of LESS combustor[R]. ASME GT2011-45786, 2011.
    [10] Fu Z B, Lin Y Z, Li L, et al. Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3):488-496. doi: 10.1016/j.cja.2013.12.017
    [11] 付镇柏, 林宇震, 张驰, 等.中心分级燃烧室预燃级燃烧性能试验[J].航空动力学报, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024

    Fu Z B, Lin Y Z, Zhang C, et al. Experiment of combustion performance of internally-staged combustor pilot stage[J]. Journal of Aerospace Power, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024
    [12] 秦皓, 丁志磊, 李海涛, 等. LESS燃烧室非定长旋流流动[J].航空动力学报, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm

    Qin H, Ding Z L, Li H T, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm
    [13] Li L, Lin Y Z, Fu Z B, et al. Emission characteristics of a mo-del combustor for aero gas turbine application[J]. Experimental Thermal and Fluid Science, 2016, 72:235-248. doi: 10.1016/j.expthermflusci.2015.11.012
    [14] Wang B, Zhang C, Lin Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbine and Power, 2016, 139(1):011501. doi: 10.1115/1.4034154
    [15] Wang B, Zhang C, Hui X, et al. Influence of sleeve angle on the LBO performance of TeLESS-Ⅱ combustor[R]. AIAA-2016-4693, 2016.
    [16] 王智勇, 王波, 韩啸, 等. TeLESS Ⅱ低排放燃烧室预燃级设计对排放的影响[J].航空动力学报, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004

    Wang Z Y, Wang B, Han X, et al. Effect of pilot design in the TELESS Ⅱ low emission combustor on emission[J]. Journal of Aerospace Power, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004
    [17] Guin C. Characterization of autoignition and flashback in premixed injection systems AVT[C]//Proc of the Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels Lisbon. 1998.
    [18] Lefebvre A H, Freeman W G, Cowell L H. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures[R]. NASA-CR-175064, 1986.
    [19] 毛茂华, 黄春峰.罗·罗公司民用航空发动机技术传承与创新[J].燃气涡轮试验与研究, 2017, 30(6):56-60. doi: 10.3969/j.issn.1672-2620.2017.06.011

    Mao M H, Huang C F. The development trends of Rolls-Royce's civil aero-engine technologies[J]. Gas Turbine Experiment and Research, 2017, 30(6):56-60. doi: 10.3969/j.issn.1672-2620.2017.06.011
    [20] 赵永胜.受限流动空间内燃料横向喷射的自燃与回火特性研究[D].北京: 北京航空航天大学, 2016.

    Zhao Y S. Autoignition and flashback characteristics of fuel injected into crossflow in the confined flow space[D]. Beijng: Beihang University, 2016.
    [21] Nejad A S, Schetz J A. The effect of viscosity and surface tension of liquid injectants on the structural characteristics of the plume in a supersonic airstream[R]. AIAA-82-0253, 1982.
    [22] 方亚梅, 王全德, 王繁, 等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报, 2012, 28(11):2536-2542. doi: 10.3866/PKU.WHXB201208201

    Fang Y M, Wang Q D, Wang F, et al. Reduction of the detailed kinetic mechanism for high-temperature combustion of n-decane[J]. Acta Physico-Chimica Sinica, 2012, 28(11):2536-2542. doi: 10.3866/PKU.WHXB201208201
    [23] 甯红波, 李泽荣, 李象远.燃烧反应动力学研究进展[J].物理化学学报, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011

    Ning H B, Li Z R, Li X Y. Progress in combustion kinetics[J]. Acta Physico-Chimica Sinica, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011
    [24] 张巍锋, 鲜雷勇, 雍康乐, 等.正十一烷/空气在宽温度范围下着火延迟的激波管研究[J].物理化学学报, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012

    Zhang W F, Xian L Y, Yong K L, et al. A shock tube study of n-undecane/air ignition delays over a wide range of temperatures[J]. Acta Physico-Chimica Sinica, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012
    [25] Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times:shock tube experiments over wide conditions and surrogate model predictions[J]. Combustion and Flame, 2008, 152(1-2):125-143. doi: 10.1016/j.combustflame.2007.06.019
    [26] Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times and modeling: studies at high pressures and low temperatures in a shock tube[R]. AIAA-2007-5671, 2007.
    [27] Vasu S S, Davidson D F, Hanson R K. Shock tube ignition delay times and modeling of jet fuel mixtures[R]. AIAA-2006-4402, 2006.
    [28] 勾华杰, 王苏, 崔季平, 等. JP10点火延时的激波管实验测量[C]//第十二届全国激波与激波管会议论文集. 2006.

    Gou H J, Wang S, Cui J P, et al. Ignition delay of JP10 using shock tube[C]//Proc of the 12th national shock and shock tube conference. 2006.
    [29] 廖钦.煤油及其裂解产物自点火现象的初步实验研究[D].合肥: 中国科学技术大学; 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm

    Liao Q. Experimental studies on autoignition phenomena of ke-rosene and cracked kerosene in a shock tube[D]. Hefei: University of Science and Technology of China, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm
    [30] 梁金虎, 王苏, 张灿, 等. RP-3航空煤油点火特性研究[J].力学学报, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm

    Liang J H, Wang S, Zhang C, et al. Studies on the autoignition characteristics of RP-3 aviation kerosene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm
    [31] 廖钦, 徐胜利.雾化激波管研制和煤油点火延时测量[J].实验流体力学, 2009, 23(3):70-79. doi: 10.3969/j.issn.1672-9897.2009.03.015

    Liao Q, Xu S L. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):70-79. doi: 10.3969/j.issn.1672-9897.2009.03.015
    [32] 廖钦, 徐胜利, 李卫兵.不同压力煤油气溶胶点火延时的测量研究[J].中国科学技术大学学报, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012

    Liao Q, Xu S L, Li W B. Study on ignition delay of kerosene aerosol in shock tube[J]. Journal of University of Science and Technology of China, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012
    [33] Wang W J, Oehlschlaeger M A. A shock tube study of methyl decanoate autoignition at elevated pressures[J]. Combustion and Flame, 2012, 159(2):476-481. doi: 10.1016/j.combustflame.2011.07.019
    [34] Tang C L, Man X J, Wei L J, et al. Further study on the ignition delay times of propane-hydrogen-oxygen-argon mixtures:effect of equivalence ratio[J]. Combustion and Flame, 2013, 160(11):2283-2290. doi: 10.1016/j.combustflame.2013.05.012
    [35] Zhang C H, Li B, Rao F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3):3151-3158. doi: 10.1016/j.proci.2014.05.017
    [36] Davidson D F, Zhu Y, Shao J K, et al. Ignition delay time correlations for distillate fuels[J]. Fuel, 2017, 187:26-32. doi: 10.1016/j.fuel.2016.09.047
    [37] Kumar K, Sung C J. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures:Jet-A and JP-8[J]. Combustion and Flame, 2010, 157(4):676-685. doi: 10.1016/j.combustflame.2010.01.001
    [38] Ihara T, Qin X J, Tanaka T, et al. Auto ignition and knocking phenomena in stratified mixture of lean condition[R]. ASME HT2007-32736, 2007.
    [39] Kumar K, Sung C J. Autoignition of jet fuels under high pressure and low-to-intermediate temperatures[R]. AIAA-2009-1527, 2009.
    [40] Kumar K, Mittal G, Sung C J. Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions[J]. Combustion and Flame, 2009, 156(6):1278-1288. doi: 10.1016/j.combustflame.2009.01.009
    [41] Allen C, Toulson E, Tepe D, et al. Characterization of the effect of fatty ester composition on the ignition behavior of biodiesel fuel sprays[J]. Fuel, 2013, 111(3):659-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08051426a953d619ae38f952efd89366
    [42] Valco D, Gentz G, Allen C, et al. Autoignition behavior of synthetic alternative jet fuels:an examination of chemical composition effects on ignition delays at low to intermediate temperatures[J]. Proceedings of the Combustion Institute, 2015, 35(3):2983-2991. doi: 10.1016/j.proci.2014.05.145
    [43] Valco D J, Min K, Oldani A. Low temperature autoignition of conventional jet fuels and surrogate jet fuels with targeted pro-perties in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2016, 36(3):3687-3694. https://www.researchgate.net/publication/308978559_Low_temperature_autoignition_of_conventional_jet_fuels_and_surrogate_jet_fuels_with_targeted_properties_in_a_rapid_compression_machine?ev=auth_pub
    [44] Gokulakrishnan P, Klassen M S, Roby R J. Ignition characteri-stics of a fischer-tropsch synthetic jet fuel[R]. ASME GT2008-51211, 2008.
    [45] Holton M M, Gokulakrishnan P, Klassen M S, et al. Autoignition delay time measurements of methane, ethane, and propane pure fuels and methane-based fuel blends[R]. ASME GT2009-59309, 2009.
    [46] Gokulakrishnan P, Gaines G, Klassen M S, et al. Autoignition of aviation fuels experimental and modeling study[R]. AIAA-2007-5701. 2007.
    [47] Gokulakrishnan P, Gaines G, Currano J, et al. Experimental and kinetic modeling of kerosene-type fuels at gas turbine opera-ting conditions[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3):655-663. doi: 10.1115/1.2436575
    [48] Joklik R, Fuller C, Gokulakrishnan P, et al. The effect of multi-component fuel evaporation on the ignition of JP-8[R]. ASME GT2010-22990, 2010.
    [49] Fuller C C, Gokulakrishnan P, Klassen M S, et al. Investigation of the effects of vitiated conditions on the autoignition of JP-8[R]. AIAA-2009-4925, 2009.
    [50] Beerer D, McDonell V, Samuelsen S, et al. Interpretation of flow reactor based ignition delay measurements[R]. ASME GT2009-60268, 2009.
    [51] Beerer D J, McDonell V G. An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures[J]. Proceedings of the Combustion Institute, 2011, 33(1):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211740112
    [52] Christensen M K, Pal S, Woodward R D, et al. Flow reactor autoignition studies of iso-octane at high pressures and low to intermediate temperatures[R]. AIAA-2012-0500, 2012.
    [53] Schönborn A, Sayad P, Konnov A A, et al. Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging[J]. Combustion and Flame, 2013, 160(6):1033-1043. doi: 10.1016/j.combustflame.2013.01.018
    [54] Schönborn A, Sayad P, Konnov A A, et al. Autoignition of dimethyl ether and air in an optical flow-reactor[J]. Energy & Fuels, 2014, 28(6):4130-4138. http://cn.bing.com/academic/profile?id=4af4db50e252b51b4aa33628810c0c78&encoded=0&v=paper_preview&mkt=zh-cn
    [55] Wang H W, Oehlschlaeger M A. Autoignition studies of conventional and fischer-tropsch jet fuels[J]. Fuel, 2012, 98(6):249-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=585da8efbca79a537ad8e3933482e3ff
    [56] Kumar K, Sung C J. A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures[J]. Fuel, 2010, 89(10):2853-2863. doi: 10.1016/j.fuel.2010.05.021
    [57] 刘伟雄, 杨阳, 邵菊香, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响[J].物理化学学报, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809

    Liu W X, Yang Y, Shao J X, et al. Influence of H2O and CO2 contamination in air on the combustion properties of ethylene[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809
    [58] 梁金虎, 胡弘浩, 王苏, 等.空气污染组分H2O和CO2对乙烯点火性能的影响[J].推进技术, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm

    Liang J H, Hu H H, Wang S, et al. Effects of H2O and CO2 in vitiated air on ignition characteristics of ethylene[J]. Journal of Propulsion Technology, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm
    [59] Andrey S, Zhukov V, Sechenov V. Ignition delay times of Jet-A/air mixtures[R]. AIAA-2012-0501, 2012.
    [60] Aggarwal S K. A review of spray ignition phenomena:present status and future research[J]. Progress in Energy and Combustion Science, 1998, 24(6):565-600. doi: 10.1016/S0360-1285(98)00016-1
    [61] Khan Q S, Baek S W, Ghassemi H. On the autoignition and combustion characteristics of kerosene droplets at elevated pressure and temperature[J]. Combustion Science and Technology, 2007, 179(12):2437-2451. doi: 10.1080/00102200701484605
    [62] 钟北京, 姚通, 文斐.基于特征值分析的正癸烷骨架和总包简化机理[J].物理化学学报, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002

    Zhong B J, Yao T, Wen F. Skeletal and reduced mechanisms of n-decane simplified with eigenvalue analysis[J]. Acta Physico-Chimica Sinica, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002
    [63] 刘建文, 熊生伟, 马雪松, 等.正癸烷燃烧详细反应机理的构建及简化[J].推进技术, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011

    Liu J W, Xiong S W, Ma X S, et al. Development and reduction of n-decane detailed combustion reduction mechanism[J]. Journal of Propulsion Technology, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011
    [64] 刘建文, 姚通, 钟北京, 等.正十四烷低温点火及燃烧机理的构建和简化[J].推进技术, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016

    Liu J W, Yao T, Zhong B J, et al. Development and reduction of n-tetradecane mechanism for low temperature ignition and combustion[J]. Journal of Propulsion Technology, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016
    [65] ASTM D6890, Standard test method for determination of ignition delay and derived cetane number (DCN) of diesel fuel oils by combustion in a constant volume chamber[S]. ASTM, 2012.
    [66] ASTM D7668, Standard test method for determination of derived cetane number (DCN) of diesel fuel oils-fixed range injection period, constant volume combustion chamber method[S]. ASTM, 2012.
    [67] Zheng Z L, Badawy T, Henein N, et al. Investigation of physical and chemical delay periods of different fuels in the ignition quality tester[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(6):061501. doi: 10.1115/1.4023607
    [68] Markides C N, Mastorakos E. An experimental study of hydrogen autoignition in a turbulent co-flow of heated air[J]. Proceedings of the Combustion Institute, 2005, 30(1):883-891. http://cn.bing.com/academic/profile?id=f30102563573f15cc66a5a07d3c38f4d&encoded=0&v=paper_preview&mkt=zh-cn
    [69] Wang Y, Rutland C J. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow[J]. Proceedings of the Combustion Institute, 2005, 30(1):893-900. https://www.researchgate.net/publication/222406951_Effects_of_temperature_and_equivalence_ratio_on_the_ignition_of_n-heptane_fuel_spray_in_turbulent_flow
    [70] Shinjo J, Umemura A. Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray[J]. Proceedings of the Combustion Institute, 2013, 34(1):1553-1560. http://cn.bing.com/academic/profile?id=aed849190906fa3a7635861acd639884&encoded=0&v=paper_preview&mkt=zh-cn
    [71] Dooley S, Song H W, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466. doi: 10.1016/j.combustflame.2011.11.002
    [72] Hui X, Kumar K, Sung C J, et al. Experimental studies on the combustion characteristics of alternative jet fuels[J]. Fuel, 2012, 98(3):176-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c8e0033273c329fa87d972ca9f2c56
    [73] Won S H, Veloo P S, Santner J, et al. Comparative evaluation of global combustion properties of alternative jet fuels[R]. AIAA-2013-0156, 2013.
    [74] Dooley S, Won S H, Jahangirian S, et al. The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated, experimentally validated surrogate fuel[J]. Combustion and Flame, 2012, 159(10):3014-3020. doi: 10.1016/j.combustflame.2012.04.010
    [75] Allen C, Valco D, Toulson E, et al. Ignition behavior and surrogate modeling of JP-8 and of camelina and tallow hydrotreated renewable jet fuels at low temperatures[J]. Combustion and Flame, 2013, 160(2):232-239. doi: 10.1016/j.combustflame.2012.10.008
    [76] Marek C J, Papathnkos L C, Verbulecz P W. Preliminary studies of autoignition and flashback in a premixing-prevaporizing flame tube using Jet-A fuel at lean equivalence ratios[R]. NASA-TM-X-3526, 1977.
    [77] Marek C J, Baker C E. High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray[R]. NASA-TM-83501, 1983.
    [78] Stringer F W, Clarke A E, Clarke J S. The spontaneous ignition of hydrocarbon fuels in a flowing system[C]. Proceedings of the Institution of Mechanical Engineers, 1969.
    [79] Sturgess G J. Advanced low-emissions catalytic combustor program, phase 1 final report[R]. NASA-CR-159656, 1981.
    [80] Hinkeldey O, Koch R, Bauer H J, et al. Laser based study of spray auto-ignition in a generic mixing duct[R]. ASME GT2008-50143, 2008.
    [81] Hinkeldey O, Schießl R, Cano-Wolff M, et al. Laser based study of auto-ignition of sprays in a continuous flow reactor[C]//Proc of the European Combustion Meeting. 2007.
    [82] Sims G J, Mistry S L, Wood J P, et al. A Study into the auto-ignition characteristics of hydrocarbon fuels with application to gas turbines[R]. ASME GT2008-50824, 2008.
    [83] Gordon R L, Mastorakos E. Autoignition of monodisperse biodiesel and diesel sprays in turbulent flows[J]. Experimental Thermal and Fluid Science, 2012, 43(3):40-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1531a20845cf7d522fa079141aba549a
    [84] Mastorakos E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(1):57-97. doi: 10.1016/j.pecs.2008.07.002
    [85] Williams A, Shcherbik D, Bibik O, et al. Autoignition of a Jet-A spray in a high temperature vitiated air flow[R]. ASME GT2015-42199, 2015.
    [86] 徐兴平, 张孝春, 李江宁, 等.燃油在高温高速气流中自燃规律的研究[C].沈阳: 中国航空学会第十四届燃烧与传热传质学术交流会论文集. 2007.

    Xu X P, Zhang X C, Li J N, et al. Study onautoignition of fuel in high temperature and high speed airflow[C]//Proc of the 14th Academic Conference on Combustion and Heat Transfer of China Aviation Society. 2007.
    [87] Zhao Y S, Zhang C, Lin Y Z. Random behavor of kerosene spray autoignition in crossflow[R]. ASME GT2016-57043, 2016.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  127
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-24
  • 修回日期:  2018-10-31
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日