Experimental study on flow structure and flame development in a hydrogen-fueled supersonic combustor
-
摘要: 采用试验方法研究了不同当量比条件下的氢气燃烧流场结构和火焰传播规律。采用壁面测压、纹影、差分干涉、火焰自发光照相以及OH-PLIF等测量手段获取流场信息,并发展了纹影、差分干涉和PLIF同步测量的试验方法,获取了流动结构和火焰的耦合测量结果。结果表明:在所研究的5个状态中,当氢气当量比大于0.17时,燃烧流场结构不稳定,火焰分布呈现破碎状,火焰在燃烧室上下壁面之间来回传播;当氢气当量比小于或等于0.17时,燃烧流场结构稳定,火焰呈现连续分布,火焰稳定分布于凹槽下部剪切层内。Abstract: The flow structure and flame development were studied experimentally in a hydrogen-fueled scramjet combustor. Wall pressure measurement, schlieren, differential interferometry, high-speed framing of flame luminosity and OH-PLIF (planar laser-induced fluorescence) were introduced to characterize the combustion flow. The synchronous measurement path diagram of schlieren, differential interferometry and PLIF was developed in this study, and the coupling results of flow structure and flame were obtained. The results show that:in the five studied cases, the combustion flow structure is unstable when the equivalent ratio of hydrogen is greater than 0.17. The fragmentation flame spreads in the flow between the top and bottom wall. When the equivalent ratio of hydrogen is less than 0.17, the continuum flame is stable and located in the cavity shear layer.
-
Key words:
- scramjet combustor /
- equivalent ratio /
- flow structure /
- oscillation
-
表 1 各研究状态
Table 1. The studied cases
Case Equivalent ratio Flux/(g·s-1) 1 0 0 2 0.10 8.76 3 0.30 26.28 4 0.04 3.504 5 0.17 14.892 6 0.23 20.148 -
[1] Dessorness O, Scherrer D, Novelli P. Tests of JAPHAR dual mode ramjet Engine[R]. AIAA-2001-1886, 2001. [2] Tohru M, Nobuo C, Takeshi K. Reaction and mixing-controlled combustion in scramjet engines[R]. AIAA-99-4871, 1999. [3] 王西耀, 肖保国, 田野, 等.当量比对燃烧模态的影响机理分析究[J].推进技术, 2015, 36(4):488-494.Wang X Y, Xiao B G, Tian Y, et al. Mechanism analysis for effects of equivalence ratio on combustion mode[J]. Journal of Propulsion Technology, 2015, 36(4):488-494. [4] 王西耀, 杨顺华, 乐嘉陵.油气比对超燃发动机点火过程的影响[J].推进技术, 2012, 33(4):522-529. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204005Wang X Y, Yang S H, Le J L. Influence of fuel-air ratio on scramjet ignition[J]. Journal of Propulsion Technology, 2012, 33(4):522-29. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204005 [5] 王宏宇, 高峰, 李旭昌, 等.当量比对超声速燃烧室性能影响的数值研究[J].固体火箭技术, 2015, 38(4):487-491. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201504007Wang H Y, Gao F, Li X C, et al. Numerical study on the effects of the equivalence ratio on the performance of supersonic combustor[J]. Journal of Solid Rocket Technology, 2015, 38(4):487-491. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201504007 [6] 贾真, 吴迪, 朴英.当量比对带凹腔超声速燃烧室流动及燃烧特性的影响[J].航空动力学报, 2012, 27(8):1704-1711. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201208005Jia Z, Wu D, Piao Y. Effect of equivalence ratio on flow and combustion characteristics of supersonic combustor with cavity[J]. Journal of Aerospace Power, 2012, 27(8):1704-1711. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201208005 [7] Tian Y, Xiao B G, Zhang S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2015, 46:451-458. doi: 10.1016/j.ast.2015.09.002 [8] Tian Y, Yang S H, Le J L. Numerical study on effect of air throttling on combustion mode formation and transition in a dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2016, 52:173-180. doi: 10.1016/j.ast.2016.02.027 [9] Le J L, Yang S H, Liu W X, et al. Massively parallel simulations of Kerosene-fueled scramjet[R]. AIAA-2005-3318, 2015. [10] Tian Y, Yang S H, Le J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(42):19218-19230. doi: 10.1016/j.ijhydene.2016.07.219 [11] 田野, 杨顺华, 肖保国, 等.空气节流对煤油燃料超燃燃烧室燃烧性能影响研究[J].宇航学报, 2015, 36(12):1421-1427. doi: 10.3873/j.issn.1000-1328.2015.12.011Tian Y, Yang S H, Xiao B G, et al. Study on the effects of air throttling on combustion performance of a kerosene-fueled scramjet combustor[J]. Journal of Astronautics, 2015, 36(12):1421-1427. doi: 10.3873/j.issn.1000-1328.2015.12.011 [12] Cabell K, Hass N, Storch A, et al. HIFiRE Direct-Connect Rig (HDCR) Phase Ⅰ, Scramjet test results from the NASA langley arc-heated scramjet test facility[R]. AIAA-2011-2248, 2011. [13] Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. American institute of Aeronautics & Astronautics, 1994. [14] Micka D J. Combustion stabilization, structure, and spreading in a laboratory dual-mode scramjet combustor[D]. Ann Arbor: University of Michigan, 2010. [15] Sun M B, Wu H Y, Fan Z Q, et al. Flame stabilization in a supersonic combustor with hydrogen injection upstream of cavity flame holders:experiments and simulations[J]. Proc IMechE, Part G:J Aerospace Engineering, 2011, 225(12):1351-1365. doi: 10.1177/0954410011401498 -