Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model
-
摘要: 在大规模并行可压缩Navier-Stokes求解器AHL3D框架上,搭建了γ-Reθ转捩模型。在该模型基础上,通过高超声速二维进气道构型算例,加入了可压缩性修正,使其能够模拟可压缩性对转捩位置的影响,同时通过修改分离诱导转捩关键参数,增加了模型对粗糙颗粒诱导强制转捩的敏感性,最后对耦合关系式也进行了适当的修改。为了验证修改后的模型对高超声速自然转捩和强制转捩的预测能力,对Ma7.4 Ames全尺寸模型和单个粗糙颗粒诱导Ma6的平板转捩进行了模拟。结果表明:与原始模型相比,修改后的模型的转捩位置被大大推迟,并且粗糙颗粒诱导转捩的作用被加强,与实验结果吻合良好。采用此模型对X-51A的20%缩比进气道模型在普渡大学Ma6静音风洞中的试验状态进行了模拟,模型不仅能够反映来流湍流度对转捩的影响,也能反映转捩带对转捩的促进作用。结果显示修改的转捩模型在高超声速复杂构型的转捩预测及研究中具有很好的应用潜力。Abstract: The correlation-based γ-Reθ transition model has been implemented into a large scale parallel compressible Navier-Stokes solver AHL3D. In order to simulate the effects of compressibility of the hypersonic flow, compressible modification has been added into this model. The constant parameter for the separation induced transition has been enhanced to improve the ability of the forced transition simulation. The correlation equations have been adjusted after all the modifications. In order to validate the modified models' ability to capture the transition location, a Ma=7.4 Ames all-body aircraft model for natural transition and a Ma=6 flat plate installed with three dimensional roughness elements for forced transition were simulated. The results show that compared to the original model, the modified model gives much later transition location and stronger effects of the roughness elements, which agree well with the experimental results. Finally, the modified model has been applied to the simulation of hypersonic natural and forced transition of the 20% scale X-51A fore body configuration in BAM6QT. The present model can simulate not only the effects of the free stream turbulence intensity but also the promotion of the transition position by the forced transition trips. The results show the good potential of the modified γ-Reθ transition model in transition prediction for complex configurations in hypersonic flows.
-
Key words:
- transition model /
- boundary layer /
- hypersonic inlet /
- forced transition
-
表 1 二维计算时进气道来流条件
Table 1. Free stream condition for 2-D inlet simulation
Case Ma 总压/
MPa总温/
K迎角/
(°)Re/
(107·m-1)转捩类型 1 5.96 2.00 473.2 1.0 1.82 自然 2 4.97 1.01 357.7 -0.6 2.21 自然 3 5.96 2.00 473.2 1.0 1.82 强制 表 2 全尺寸升力体模型风洞试验来流条件
Table 2. Test conditions for the all-body model
Ma Re/m-1 总温/K 静温/K 壁面温度/K 迎角/(°) 7.4 15×106 722 62 300 15 表 3 20%缩比X-51A构型的试验条件
Table 3. Test conditions for the 20% scaled X-51A forebody configuration
Case Ma Re/m-1 总压/kPa 总温/K 来流湍流度 转捩类型 4 6.00 6.59×106 586 418 0.05% 自然 5 5.80 7.40×106 621 424 3.00% 自然 6 5.78 7.35×106 614 424 3.00% 强制 -
[1] Mayer C S J, Terzi D A V, Fasel H F. DNS of complete transition to turbulence via oblique breakdown at Mach3[R]. AIAA-2008-4398, 2008. [2] Ducros F, Comte P, Lesieur M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36. doi: 10.1017/S0022112096008221 [3] Mack L M. Boundary layer linear stability theory[R]. AGARD Report No.709, 1984. [4] Kocian T S, Moyes T, Mullen C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry[R]. AIAA-2016-3346, 2016. [5] Scott S, Nowak R J, Horvath T J. Boundary layer control for hypersonic airbreathing vehicles[R]. AIAA-2004-2246, 2004. [6] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables-part1: model formulation[R]. GT-2004-53452, 2004. [7] Langtry R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University of Stuttgart, 2006. [8] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362 [9] Watanabe Y, Misaka M, Obayashi S, et al. Application of crossflow transition criteria to local correlation-based transition model[R]. AIAA-2009-1145, 2009. [10] Seyfert C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[R]. AIAA-2012-0448, 2012. [11] Grabe C, Krumbein K. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539. doi: 10.2514/1.C032063 [12] Langel C M, Chow R, Dam P V. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition[R]. AIAA-2014-0234, 2014. [13] Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA-2008-2598, 2008. [14] Zhang X D, Gao Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7 [15] Cheng G, Nichols R, Neroorkar K, et al. Validation and assessment of turbulence transition models[R]. AIAA-2009-1141, 2009. [16] Bensassi K, Lani A, Patrick. Rambaud P. Numerical investigations of local correlation-based transition model in hypersonic flows[R]. AIAA-2012-3151, 2012. [17] 赵慧勇.超燃冲压整体发动机并行数值研究[D].绵阳: 中国空气动力研究与发展中心, 2005.Zhao H Y. Massively parallel computation on scramjet combustor[D]. Mianyang: China Aerodynamics Research and Development Center, 2005. [18] Le J L, Yang S H, Liu W X, et al. Massively parallel simulations of kerosene-fueled scramjet[R]. AIAA-2005-3318, 2005. [19] 尚庆, 陈林, 李雪, 等.高超声速钝锥双楔绕流流动转捩与分离流动的壁温影响[J].航空学报, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htmShang Q, Chen L, Li X, et al. Wall temperature effect on transition flow and separated flow in hypersonic flow around a blunt double wedge[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htm [20] Reshotko E. Is Reθ/Me a meaningful transition criterion?[J]. AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952 [21] 赵慧勇, 周瑜, 倪鸿礼.高超声速进气道边界层转捩试验[J].实验流体力学, 2012, 26(1):1-6 doi: 10.3969/j.issn.1672-9897.2012.01.001Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6. doi: 10.3969/j.issn.1672-9897.2012.01.001 [22] 易淼荣, 赵慧勇, 乐嘉陵.强制转捩对高超声速进气道性能影响[J].航空动力学报, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005Yi M R, Zhao H Y, Le J L. Effect of forced-transition on performance of hypersonic inlet[J]. Journal of Aerospace Power, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005 [23] Forsythe J R, Hoffmann K, Suzen Y. Investigation of modified Menter's two-equation turbulence models for supersonic applications[R]. AIAA-99-0873, 1999. [24] Lockman W K, Lawrence S L, Cleary J W. Flow over an all-body hypersonic aircraft-experiment and computation[J]. Journal of Spacecraft and Rockets, 1992, 29(1):7-15. doi: 10.2514/3.26308 [25] Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. doi: 10.1007/s00348-010-0939-4 [26] Tirtey S C, Walpot L, Chazot O. Characterization of hypersonic roughness induced transition for the EXPERT flight experiment[R]. AIAA-2009-7215, 2009. [27] Wang L, Xiao L, Fu S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56:112-124. doi: 10.1016/j.ast.2016.07.004 [28] Wang L, Fu S. Development of anintermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow Turbulence and Combust, 2011, 87(1):165-187. doi: 10.1007/s10494-011-9336-1 [29] Orlik E, Fedioun I, Davidenko D. Boundary-layer transition on a hypersonic forebody:experiments and calculations[J]. Journal of Spacecraft and Rockets, 2011, 48(4):545-555. doi: 10.2514/1.51570 [30] Borg M P. Entitled laminar instability and transition on the X-51A[D]. West Lafayette: Purdue University, 2009. -