留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟

易淼荣 赵慧勇 乐嘉陵

易淼荣, 赵慧勇, 乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019
引用本文: 易淼荣, 赵慧勇, 乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019
Yi Miaorong, Zhao Huiyong, Le Jialing. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019
Citation: Yi Miaorong, Zhao Huiyong, Le Jialing. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019

基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟

doi: 10.11729/syltlx20180019
详细信息
    作者简介:

    易淼荣(1989-), 男, 湖南怀化人, 博士研究生。研究方向:高超声速边界层转捩、计算流体力学。通信地址:四川省绵阳市二环路南段6号1902信箱。E-mail:hnhhhjtw@163.com

    通讯作者:

    赵慧勇, E-mail:gmreszhao@163.com

  • 中图分类号: V211.73

Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model

  • 摘要: 在大规模并行可压缩Navier-Stokes求解器AHL3D框架上,搭建了γ-Reθ转捩模型。在该模型基础上,通过高超声速二维进气道构型算例,加入了可压缩性修正,使其能够模拟可压缩性对转捩位置的影响,同时通过修改分离诱导转捩关键参数,增加了模型对粗糙颗粒诱导强制转捩的敏感性,最后对耦合关系式也进行了适当的修改。为了验证修改后的模型对高超声速自然转捩和强制转捩的预测能力,对Ma7.4 Ames全尺寸模型和单个粗糙颗粒诱导Ma6的平板转捩进行了模拟。结果表明:与原始模型相比,修改后的模型的转捩位置被大大推迟,并且粗糙颗粒诱导转捩的作用被加强,与实验结果吻合良好。采用此模型对X-51A的20%缩比进气道模型在普渡大学Ma6静音风洞中的试验状态进行了模拟,模型不仅能够反映来流湍流度对转捩的影响,也能反映转捩带对转捩的促进作用。结果显示修改的转捩模型在高超声速复杂构型的转捩预测及研究中具有很好的应用潜力。
  • 图  1  高超声速进气道二维模型及网格示意图

    Figure  1.  Grid of two dimensional hypersonic inlet

    图  2  不同计算方法得到的热流分布(case1)

    Figure  2.  Heat flux distribution of different methods (case1)

    图  3  自然转捩热流分布(case2)

    Figure  3.  Heat flux distribution of natural transition (case2)

    图  4  强制转捩热流分布(case3)

    Figure  4.  Heat flux distribution of forced transition (case3)

    图  5  自然转捩热流分布(case1,修正后的模型)

    Figure  5.  Heat flux distribution of natural transition (case1, modified model)

    图  6  自然转捩热流分布(case2,修正后的模型)

    Figure  6.  Heat flux distribution of natural transition (case2, modified model)

    图  7  强制转捩热流分布(case3,修正后的模型)

    Figure  7.  Heat flux distribution of forced transition (case3, modified model)

    图  8  多套网格计算结果(case2,修正后的模型)

    Figure  8.  Heat flux distribution of three meshes (case2, modified model)

    图  9  全尺寸升力体模型示意图

    Figure  9.  Configuration of the all-body model

    图  10  全尺寸升力体模型网格示意图

    Figure  10.  Grid of the all-body model

    图  11  中心线St数分布

    Figure  11.  Centerline Stanton number distribution

    图  12  迎风面的St数分布和摩擦力线

    Figure  12.  Stanton number distribution and friction force lines of the windward

    图  13  模型示意图

    Figure  13.  Model configuration

    图  14  粗糙颗粒附近网格示意图

    Figure  14.  Mesh of the roughness elements

    图  15  红外热试验和计算得到的St数分布(圆柱形粗糙颗粒诱导转捩)

    Figure  15.  Infra-red visualization and calculated Stanton number distribution for cylinder roughness elements

    图  16  红外热试验和计算得到的St数分布(钻石形粗糙颗粒诱导转捩)

    Figure  16.  Infra-red visualization and calculated Stanton number distribution for diamond roughness elements

    图  17  尾迹区和非尾迹区的St数对比

    Figure  17.  Comparison of St number in and out of wake region for cylinder and diamond roughness elements

    图  18  粗糙颗粒下游的流向涡发展情况

    Figure  18.  Development of stream wise vortex downstream of the roughness elements

    图  19  20%缩比X-51A前体构型示意图

    Figure  19.  Windward side of 20% scale X-51A forebody configuration

    图  20  迎风面测量得到的壁面温度和计算得到的摩阻系数(case5)

    Figure  20.  Measured surface temperature and calculated skin friction for windward surface (case5)

    图  21  迎风面测量得到的壁面温度和计算得到的摩阻系数(case6)

    Figure  21.  Measured surface temperature and calculated skin friction for windward surface (case6)

    图  22  计算得到的迎风面热流对比

    Figure  22.  Calculated heat flux of windward side

    图  23  中心线上测量得到的壁面温度和计算得到的摩阻系数(case4, case5)

    Figure  23.  Measured surface temperature and calculated skin friction of the center line (case4, case5)

    图  24  中心线上测量得到的壁面温度和计算得到的摩阻系数(case6)

    Figure  24.  Measured surface temperature and calculated skin friction of the center line (case6)

    表  1  二维计算时进气道来流条件

    Table  1.   Free stream condition for 2-D inlet simulation

    Case Ma 总压/
    MPa
    总温/
    K
    迎角/
    (°)
    Re/
    (107·m-1)
    转捩类型
    1 5.96 2.00 473.2 1.0 1.82 自然
    2 4.97 1.01 357.7 -0.6 2.21 自然
    3 5.96 2.00 473.2 1.0 1.82 强制
    下载: 导出CSV

    表  2  全尺寸升力体模型风洞试验来流条件

    Table  2.   Test conditions for the all-body model

    Ma Re/m-1 总温/K 静温/K 壁面温度/K 迎角/(°)
    7.4 15×106 722 62 300 15
    下载: 导出CSV

    表  3  20%缩比X-51A构型的试验条件

    Table  3.   Test conditions for the 20% scaled X-51A forebody configuration

    Case Ma Re/m-1 总压/kPa 总温/K 来流湍流度 转捩类型
    4 6.00 6.59×106 586 418 0.05% 自然
    5 5.80 7.40×106 621 424 3.00% 自然
    6 5.78 7.35×106 614 424 3.00% 强制
    下载: 导出CSV
  • [1] Mayer C S J, Terzi D A V, Fasel H F. DNS of complete transition to turbulence via oblique breakdown at Mach3[R]. AIAA-2008-4398, 2008.
    [2] Ducros F, Comte P, Lesieur M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36. doi: 10.1017/S0022112096008221
    [3] Mack L M. Boundary layer linear stability theory[R]. AGARD Report No.709, 1984.
    [4] Kocian T S, Moyes T, Mullen C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry[R]. AIAA-2016-3346, 2016.
    [5] Scott S, Nowak R J, Horvath T J. Boundary layer control for hypersonic airbreathing vehicles[R]. AIAA-2004-2246, 2004.
    [6] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables-part1: model formulation[R]. GT-2004-53452, 2004.
    [7] Langtry R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University of Stuttgart, 2006.
    [8] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362
    [9] Watanabe Y, Misaka M, Obayashi S, et al. Application of crossflow transition criteria to local correlation-based transition model[R]. AIAA-2009-1145, 2009.
    [10] Seyfert C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[R]. AIAA-2012-0448, 2012.
    [11] Grabe C, Krumbein K. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539. doi: 10.2514/1.C032063
    [12] Langel C M, Chow R, Dam P V. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition[R]. AIAA-2014-0234, 2014.
    [13] Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA-2008-2598, 2008.
    [14] Zhang X D, Gao Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7
    [15] Cheng G, Nichols R, Neroorkar K, et al. Validation and assessment of turbulence transition models[R]. AIAA-2009-1141, 2009.
    [16] Bensassi K, Lani A, Patrick. Rambaud P. Numerical investigations of local correlation-based transition model in hypersonic flows[R]. AIAA-2012-3151, 2012.
    [17] 赵慧勇.超燃冲压整体发动机并行数值研究[D].绵阳: 中国空气动力研究与发展中心, 2005.

    Zhao H Y. Massively parallel computation on scramjet combustor[D]. Mianyang: China Aerodynamics Research and Development Center, 2005.
    [18] Le J L, Yang S H, Liu W X, et al. Massively parallel simulations of kerosene-fueled scramjet[R]. AIAA-2005-3318, 2005.
    [19] 尚庆, 陈林, 李雪, 等.高超声速钝锥双楔绕流流动转捩与分离流动的壁温影响[J].航空学报, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htm

    Shang Q, Chen L, Li X, et al. Wall temperature effect on transition flow and separated flow in hypersonic flow around a blunt double wedge[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htm
    [20] Reshotko E. Is Reθ/Me a meaningful transition criterion?[J]. AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952
    [21] 赵慧勇, 周瑜, 倪鸿礼.高超声速进气道边界层转捩试验[J].实验流体力学, 2012, 26(1):1-6 doi: 10.3969/j.issn.1672-9897.2012.01.001

    Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6. doi: 10.3969/j.issn.1672-9897.2012.01.001
    [22] 易淼荣, 赵慧勇, 乐嘉陵.强制转捩对高超声速进气道性能影响[J].航空动力学报, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005

    Yi M R, Zhao H Y, Le J L. Effect of forced-transition on performance of hypersonic inlet[J]. Journal of Aerospace Power, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005
    [23] Forsythe J R, Hoffmann K, Suzen Y. Investigation of modified Menter's two-equation turbulence models for supersonic applications[R]. AIAA-99-0873, 1999.
    [24] Lockman W K, Lawrence S L, Cleary J W. Flow over an all-body hypersonic aircraft-experiment and computation[J]. Journal of Spacecraft and Rockets, 1992, 29(1):7-15. doi: 10.2514/3.26308
    [25] Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. doi: 10.1007/s00348-010-0939-4
    [26] Tirtey S C, Walpot L, Chazot O. Characterization of hypersonic roughness induced transition for the EXPERT flight experiment[R]. AIAA-2009-7215, 2009.
    [27] Wang L, Xiao L, Fu S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56:112-124. doi: 10.1016/j.ast.2016.07.004
    [28] Wang L, Fu S. Development of anintermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow Turbulence and Combust, 2011, 87(1):165-187. doi: 10.1007/s10494-011-9336-1
    [29] Orlik E, Fedioun I, Davidenko D. Boundary-layer transition on a hypersonic forebody:experiments and calculations[J]. Journal of Spacecraft and Rockets, 2011, 48(4):545-555. doi: 10.2514/1.51570
    [30] Borg M P. Entitled laminar instability and transition on the X-51A[D]. West Lafayette: Purdue University, 2009.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  177
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-06
  • 修回日期:  2018-04-25
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日