Experimental prediction of lean blowout: a review
-
摘要: 贫燃熄火(Lean Blowout,LBO)属于一类特殊的不稳定燃烧现象,往往导致严重后果。因此,及时准确地预测出贫燃熄火现象是实现燃烧稳定性控制的一个重要前提。本文综述了2000年以来,基于化学发光信号、可见光谱颜色信号、温度信号、声压信号和离子电信号预测LBO的原理,以及其采集方式和各自特点。接着介绍了将这些信号进行分析处理得到控制参数的5类方法,分别为统计法、阈值-事件法、频谱法、符号法和非线性动力学法,将这些方法进行综合比较,评价了其预测效果。最后从实际应用的角度出发,对贫燃熄火检测技术的未来发展提出展望。Abstract: Lean Blowout (LBO) is a special kind of instable combustion phenomena which can lead to catastrophic consequences. Thus, it is critical to accurately predict and control the occurrence of LBO. In this work, we summarize the methods developed since 2000 for the prediction of LBO based on flame chemiluminescence, color, temperature, acoustic, and ion signals. How to collect these signals is described as well as five methods of analyzing the collected signals are introduced and compared against each other. Finally, conclusions are provided and future research perspectives are proposed.
-
Key words:
- lean blowout /
- combustion instability /
- signal sampling /
- detection and prediction
-
表 1 信号类型汇总
Table 1. Summary of signal types for LBO prediction
信号类型
Signal type采集设备
Instrumentation采样频率
Sampling frequency参考文献 & 年份
References & year信号采集特点
CharacteristicsChemiluminescence
(OH*/CH*)Photodiode
PMT1~5 kHz [3, 6, 24-28]
2002-2016(a) Area measurement; (b) Easily affected by interference from other species; (c) Require optical windows Acoustic pressure
(p)Microphone 2kHz [14, 15, 17, 18, 29]
2003-2015(a) Global measurement; (b) Easily affected by interference from background noise; (c) Easy to operate Temperature(T) TDL 2kHz [8, 9, 11, 30]
2006-2009(a) Local measurement; (b) Insensitive to background acoustic noise and flame emissions; (c) Complex and not easy to operate Color
(C)DSLR camera Maximum framing rate [12, 13]
2008-2013(a) Global measurement; (b) Inexpensive and easy to operate; (c) consistent for sensing the incipient LBO over awide range of air/fuel unmixedness Ion
(I)Ion current sensor 4~10kHz [20-23, 31]
2004-2017(a) Local and intrusion measurement; (b) Easy to install; (c) Sensitive to the change of flame 表 2 信号处理方法汇总
Table 2. Summary of signal processing methods for LBO prediction
信号处理方法 信号来源 控制参数 计算效率 稳定性 灵敏性 参考文献 & 年份 Statistic OH*/CH*,
p,
C,
IRMS;Θ;γ;
σ2;μ;Peak;High Low Low [6, 13, 27, 32, 41]
2002-2016Threshold-event OH*/CH*,
p,
ISI Medium High High [5, 15, 25, 26, 42]
2002-2013Symbol OH*/CH*,
p,M High High Medium [28, 36, 37]
2006-2015Spectrum OH*/CH*,
p,
T,
IEF; SIR Medium Medium Low [7, 9, 11, 15, 18, 20, 31]
2002-2017Nonlinear dynamics p Etrans; hp Low High Medium [29, 38, 39]
2011-2014 -
[1] Chao Y C, Chang Y L, Wu C Y, et al. An experimental investigation of the blowout process of a jet flame[J]. Proceedings of the Combustion Institute, 2000, 28(1):335-342. doi: 10.1016/S0082-0784(00)80228-3 [2] Hedman P O, Fletcher T H, Graham S G, et al. Observations of flame behavior in a laboratory-scale pre-mixed natural gas/air gas turbine combustor from PLIF measurements of OH[J]. American Society of Mechanical Engineers, 2002, (2):301-311. https://www.researchgate.net/profile/Thomas_Fletcher4/publication/267403664_Observations_of_Flame_Behavior_in_a_Laboratory-Scale_Pre-Mixed_Natural_GasAir_Gas_Turbine_Combustor_From_PLIF_Measurements_of_OH/links/548f48480cf2d1800d8624aa.pdf [3] Muruganandam T M, Seitzman J M. Characterization of extinction events near blowout in swirl dump combustors[R]. AIAA-2005-4331, 2015. [4] Docquier N, Candel S. Combustion control and sensors:a review[J]. Progress in Energy & Combustion Science, 2002, 28(2):107-150. https://www.sciencedirect.com/science/article/pii/S0360128501000090 [5] Bompelly R K. Lean blowout and its robust sensing in swirl combustors[D]. Georgia Institute of Technology, 2013. [6] Thiruchengode M. Sensing and dynamics of lean blowout in a swirl dump combustor[J]. Dissertation Abstracts International, 2006, 67(3):1544. https://smartech.gatech.edu/handle/1853/10538?show=full [7] Muruganandam T, et al. Optical and acoustic sensing of lean blowout precursors[C]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. [8] Hanson R K, Jeffries J B, Zhou X, et al. Smart sensors for advanced combustion systems[R]. GCEP Technical Report, 2006. [9] Li H, Zhou X, Jeffries J B, et al. Active control of lean blowout in a swirl-stabilized combustor using a tunable diode laser[J]. Proceedings of the Combustion Institute, 2007, 31(2):3215-3223. doi: 10.1016/j.proci.2006.07.006 [10] Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 2005, 81(5):711-722. doi: 10.1007/s00340-005-1934-y [11] Li H, Zhou X, Jeffries J B, et al. Sensing and control of combustion instabilities in swirl stabilized combustors using diode-Laser absorption[J]. AIAA Journal, 2007, 45(2):390-398. doi: 10.2514/1.24774 [12] Huang H W, Zhang Y. Flame colour characterization in the vi-sible and infrared spectrum using a digital camera and image processing[J]. Measurement Science & Technology, 2008, 19(19):085406. http://cat.inist.fr/?aModele=afficheN&cpsidt=20575331 [13] Chaudhari R, Sahu R, Ghosh S, et al. Flame color as a lean blowout predictor[J]. International Journal of Spray & Combustion Dynamics, 2013, 5(1):49-66. https://www.researchgate.net/profile/Suvojit_Ghosh/publication/279229337_Flame_Color_as_a_Lean_Blowout_Predictor/links/55d5dd7608ae9d65948984f5/Flame-Color-as-a-Lean-Blowout-Predictor.pdf [14] Cohen J M, Wake B E, Choi D. Investigation of instabilities in a lean, premixed step combustor[J]. Journal of Propulsion & Power, 2003, 19(1):81-88. https://www.researchgate.net/publication/245435357_Investigation_of_Instabilities_in_a_Lean_Premixed_Step_Combustor [15] Nair S, Lieuwen T. Acoustic detection of blowout in premixed flames[J]. Journal of Propulsion & Power, 2012, 21(1):32-39. https://www.researchgate.net/profile/Tim_Lieuwen/publication/228615582_Acoustic_Detection_of_Blowout_in_Premixed_Flames/links/5404737f0cf2c48563b09363.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail [16] Prakash S, Nair S, Muruganandam T M, et al. Acoustic based rapid blowout mitigation in a swirl stabilized combustor[C]. ASME Turbo Expo 2005: Power for Land, Sea and Air, 2005. [17] Nair S, Lieuwen T. Acoustic detection of imminent blowout in pilot and swirl stabilized combustors[C]//Proceedings of ASME/IGTI Turbo Expo Atlanta, Georgia, 2003. [18] Thiruchengode M M, Nair S, Lieuwen T, et al. Real-time control of the lean blow out limit in premixed combustors[C]//Proceedings of the Third Joint Meeting of the US, 2003. [19] Fialkov A B. Investigations on ions in flames[J]. Progress in Energy & Combustion Science, 1997, 23(5-6):399-528. https://www.sciencedirect.com/science/article/pii/S0360128597000166 [20] Thornton J D, Straub D L, Chorpening B T, et al. A combustion control and diagnostics sensor for gas turbines[C]. ASME Turbo 2004: Power for Land, Sea and Air, 2004. [21] Chorpening B T, Straub D L, Huckaby E D, et al. Detection of lean blowout and combustion dynamics using flame ionization[C]. ASME Turbo Expo 2005: Power for Land, Sea and Air, 2005. [22] Li F, Xu L, Du M, et al. Ion current sensing-based lean blowout detection for a pulse combustor[J]. Combustion & Flame, 2017, 176:263-271. https://www.sciencedirect.com/science/article/pii/S0010218016303248 [23] Straub D L, Chorpening B T, Huckaby E D, et al. Time-varying flame ionization sensing applied to natural gas and propane blends in a pressurized lean premixed (LPM) combustor[C]. American Society of Mechanical Engineers, 2008. [24] Thiruchengode M, Nair S, Neumeier Y, et al. An active control system for LBO margin reduction in turbine engines[J]. British Phycological Journal, 2003, 27(2):107-118. http://www.academia.edu/6064326/An_Active_Control_System_for_LBO_Margin_Reduction_in_Turbine_Engines [25] Nair S, Muruganandam T M, Olsen R, et al. Lean blowout detection in a single nozzle swirl cup combustor[R]. AIAA-2004-138, 2004. [26] Bompelly R, Lieuwen T, Seitzman J. Lean blowout and its sensing in the presence of combustion dynamics in a premixed swirl combustor[C]. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013. [27] Yi T, Gutmark E J. Real-time prediction of incipient lean blowout in gas turbine combustors[J]. AIAA Journal, 2015, 45(7):1734-1739. https://www.researchgate.net/profile/Tongxun_Yi/publication/245426311_Real-Time_Prediction_of_Incipient_Lean_Blowout_in_Gas_Turbine_Combustors/links/0a85e53317e08d3034000000.pdf [28] Mukhopadhyay A, Chaudhari R R, Paul T, et al. Lean blow-out prediction in gas turbine combustors using symbolic time series analysis[J]. Journal of Propulsion & Power, 2013, 29(4):950-960. doi: 10.2514/1.B34711?journalCode=jpp [29] Shinoda Y, Kobayashi M, Gotoda H, et al. Detection of lean blowout in a premixed gas-turbine model combustor based on nonlinear dynamics[J]. Advanced Computational Methods & Experiments in Heat Transfer XⅡ, 2012, 75(6):323-331. doi: 10.2514/1.B34711?journalCode=jpp [30] Rieker G B, Jeffries J B, Hanson R K, et al. Diode laser-based detection of combustor instabilities with application to a scramjet engine[J]. Proceedings of the Combustion Institute, 2009, 32(1):831-838. doi: 10.1016/j.proci.2008.06.114 [31] Nair S, Rajaram R, Meyers A J, et al. Acoustic and ion sensing of lean blowout in an aircraft combustor simulator[R]. AIAA-2005-932, 2005. [32] Taware A, Shah M, Wu P, et al. Acoustics based prognostics for DLE combustor lean blowout detection[C]. ASME Turbo Expo 2006: Power for Land, Sea and Air, 2006. [33] Muruganandam T M, Seitzman J M. Optical sensing of lean blowout precursors in a premixed swirl stabilized dump combustor[C]. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, 2003. [34] Muruganandam T M, Nair S, Scarborough D, et al. Active control of lean blowout for turbine engine combustors[J]. Journal of Propulsion & Power, 2005, 21(5):807-814. http://cat.inist.fr/?aModele=afficheN&cpsidt=17113913 [35] Giorgi M G D, Sciolti A, Campilongo S, et al. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner[J]. Data in Brief, 2015, 6(C):189. https://www.sciencedirect.com/science/article/pii/S2352340915003467 [36] Datta S, Mukhopadhyay A, Sanyal D. Use of temporal irreversibility of symbolic time series for early detection of extinction in thermal pulse combustors[C]. ASME 2006 International Mechanical Engineering Congress and Exposition, 2006. [37] Sarkar S, Ray A, Mukhopadhyay A, et al. Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor[J]. International Journal of Spray & Combustion Dynamics, 2015, 7(3):209-242. doi: 10.1260/1756-8277.7.3.209 [38] Gotoda H, Nikimoto H, Miyano T, et al. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor[J]. Chaos, 2011, 21(1):013124. doi: 10.1063/1.3563577 [39] Gotoda H, Shinoda Y, Kobayashi M, et al. Detection and control of combustion instability based on the concept of dynamical system theory[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 89(2):672-699. http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=2539420 [40] Domen S, Gotoda H, Kuriyama T, et al. Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory[J]. Proceedings of the Combustion Institute, 2015, 35(3):3245-3253. doi: 10.1016/j.proci.2014.07.014 [41] Giorgi M G D, Sciolti A, Campilongo S, et al. Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout[J]. Aerospace Science & Technology, 2016, 49:41-51. https://www.sciencedirect.com/science/article/pii/S1270963815003740 [42] Bompelly R K, Seitzman J M. Robust lean blowout sensing for turbine engine combustors[C]. ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011. [43] Ballester J, Hernández R, Sanz A, et al. Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen[J]. Proceedings of the Combustion Institute, 2009, 32(2):2983-2991. doi: 10.1016/j.proci.2008.07.029 -