留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可控流场尺度预混湍流燃烧器及其火焰结构分析

余芊芊 王金华 张玮杰 张猛 黄佐华

余芊芊, 王金华, 张玮杰, 等. 可控流场尺度预混湍流燃烧器及其火焰结构分析[J]. 实验流体力学, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150
引用本文: 余芊芊, 王金华, 张玮杰, 等. 可控流场尺度预混湍流燃烧器及其火焰结构分析[J]. 实验流体力学, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150
Yu Qianqian, Wang Jinhua, Zhang Weijie, et al. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150
Citation: Yu Qianqian, Wang Jinhua, Zhang Weijie, et al. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150

可控流场尺度预混湍流燃烧器及其火焰结构分析

doi: 10.11729/syltlx20170150
基金项目: 

国家自然科学基金 51776164

国家自然科学基金 91441203

天津大学内燃机燃烧学国家重点实验室开放课题 K2017-03

激光与物质相互作用国家重点实验室开放课题 SKLLIM1508

详细信息
    作者简介:

    余芊芊(1993-), 女, 湖北武汉人, 硕士研究生。研究方向:湍流燃烧实验。通信地址:陕西省西安市碑林区西安交通大学(710049)。E-mail:qianqianyu322@163.com

    通讯作者:

    王金华, E-mail:jinhuawang@xjtu.edu.cn

  • 中图分类号: TB126

Development of scale-controlled premixed turbulent burner and the flame structure analysis

  • 摘要: 为了研究单一湍流场参数对预混湍流火焰结构的影响,以及拓宽湍流场的强度和尺度范围,发展了一套可变结构的预混湍流燃烧器。采用恒温型热线风速仪标定流场,得到了一系列湍流参数。流场标定结果表明:该燃烧器能显著拓宽湍流强度和尺度范围,并能利用不同几何结构产生多种可控流场,实现研究单一湍流参数对湍流燃烧速度和火焰结构影响的目的。选用有代表性的15种湍流孔板组合结构,利用OH-PLIF燃烧激光诊断技术,开展了湍流燃烧实验,结果表明:湍流强度的增大(1 < u'/SL,0 < 10)使得湍流火焰分区扩展到了薄层反应区,火焰面破碎程度明显增强,孤岛结构明显增多。高宏观雷诺数下,积分尺度的增长对湍流燃烧速度起抑制作用,可能存在临界宏观雷诺数Rec,能够表现流体惯性力占主导地位的程度,决定积分尺度对湍流燃烧速度的影响效果。积分尺度能量大,扰动能力强,故积分尺度越大,火焰体积越大;但过高的湍流强度会使火焰面褶皱更加剧烈,小尺度叠加在大尺度上的程度增强,最终也使火焰体积显著增大,掩盖了积分尺度对火焰体积的影响,说明积分尺度(表征大尺度)不如湍流强度(表征叠加小尺度的程度)对火焰放热率影响大。
  • 图  1  新型可控流场尺度本生灯结构剖面图

    Figure  1.  Profile of scale-controlled premixed turbulent burner

    图  2  圆孔形和狭缝形孔板结构

    Figure  2.  Structures of perforated and slot plates

    图  3  流场标定实验系统示意图

    Figure  3.  Measurement system for flow field calibration

    图  4  OH-PLIF实验系统示意图

    Figure  4.  OH-PLIF system

    图  5  多尺度孔板流场涡破碎原理图[20]

    Figure  5.  Schematic representation of the multi-scale perforated plate[20]

    图  6  结构S3_A本生灯出口中心点湍流能谱(U=3m/s)

    Figure  6.  Turbulence spectrum of structure S3_A (U=3m/s)

    图  7  相对湍流强度随孔板种类及开孔比的变化关系(U=3m/s)

    Figure  7.  Relative turbulence intensity(u′/U) variations with plates type and opening ratio(U=3m/s)

    图  8  单双层孔板的湍流强度随来流速度的变化

    Figure  8.  Turbulence intensity (u′) variations with bulk velocity (U) of single/double-layer structures

    图  9  无量纲化湍动能的轴向变化

    Figure  9.  Normalized turbulence kinetic energy (k2/U2) as a function of axial distance from plates

    图  10  相同本生灯结构的积分尺度随湍流强度的变化(通过改变来流速度改变湍流强度)

    Figure  10.  Integral scale (l0) variations with turbulence intensity (u′) of the same Bunsen burner structures (u′ is changed by bulk velocity U)

    图  11  不同本生灯结构的积分尺度随湍流强度的变化(U=2m/s)

    Figure  11.  Integral scale (l0) variations with turbulence intensity (u′) of different Bunsen burner structures (U=2m/s)

    图  12  U=3m/s时,当量比0.7的甲烷/空气的OH-PLIF图像

    Figure  12.  OH-PLIF images of CH4/air (Phi=0.7) when U=3m/s

    图  13  U=5m/s时,当量比0.7的甲烷/空气的OH-PLIF图像

    Figure  13.  OH-PLIF images of CH4/air (Phi=0.7) when U=5m/s

    图  14  Borghi-Peters湍流分区图

    Figure  14.  Borghi-Peters diagram of Bunsen burner structures

    图  15  湍流燃烧速度ST, GC/SL随湍流强度u′/SL变化关系

    Figure  15.  Turbulent flame speed (ST, GC) variations with turbulence intensity (u′) normalized by SL, 0 at various bulk velocities and integral scales

    图  16  预混湍流火焰后处理过程:(a)原始图片;(b)二值化图片;(c)火焰前锋面;(d) 100张前锋面叠加的火焰刷; (e) 500张叠加的火焰前锋面;(f)平均进展变量 <c>

    Figure  16.  Post-processing of premixed turbulent flame:(a) original images; (b) binary images; (c) flame surface; (d) flame brush superposed by 100 images; (e) flame brush superposed by 500 images; (f) mean progress variable <c>

    图  17  积分尺度和湍流强度对火焰体积的影响(U=3m/s)

    Figure  17.  Effects of integral scale (l0) and turbulence intensity (u′) on flame volume(U=3m/s)

    表  1  不同孔板的开孔比

    Table  1.   Open ratio of different plate types

    Plate type P1 P2 P3 P4 P5
    Open ratio/% 54.3 63.5 55.5 37.1 43.8
    Plate type S1 S2 S3 S4
    Open ratio/% 17.1 25.7 38.5 51.3
    下载: 导出CSV

    表  2  代表性结构的本生灯出口流场参数

    Table  2.   Flow field parameters of representative Bunsen burner structures

    U
    /(m·s-1)
    u′
    /(m·s-1)
    Structures Integral
    scale
    l0/mm
    Taylor
    scale
    lλ/mm
    Kolmogorov
    scale
    lk/mm
    3 0.96 S1_D_S1_A 5.327 0.285 0.06
    0.96 S1_B_S1_A 6.821 0.322 0.065
    0.74 S1_D 5.573 0.336 0.075
    0.56 S3_A 3.983 0.332 0.087
    0.56 S2_D 5.459 0.375 0.090
    0.27 P5_D 4.504 0.497 0.151
    0.27 P1_A 3.191 0.435 0.148
    5 1.78 S1_D_S1_A 4.852 0.203 0.038
    1.79 S1_B_S1_A 6.494 0.233 0.040
    1.21 S3_A 4.323 0.232 0.049
    1.25 S1_D 5.880 0.259 0.049
    0.70 S4_A 3.309 0.267 0.069
    0.26 P2_D 3.342 0.457 0.157
    0.47 P3_A 2.929 0.304 0.089
    0.45 P5_D 4.153 0.375 0.102
    下载: 导出CSV
  • [1] Peters N. Turbulent combustion[M]. Cambridge:Cambridge University Press, 2000.
    [2] Lipatnikov A. Fundamentals of premixed turbulent combustion[M]. Abingdon:Taylor & Francis Group, 2013.
    [3] Leisenheimer B, Leuckel W. Self-generated acceleration of confined deflagrative flame fronts[J]. Combustion Science and Technology, 1996, 118(1-3):147-164. doi: 10.1080/00102209608951976
    [4] Ballal D R. The structure of a premixed turbulent flame[J]. Proceedings of the Royal Society of London, 1979, 367(1730):353-380. doi: 10.1098/rspa.1979.0093
    [5] Li S C, Libby P A, Williams F A. Experimental investigation of a premixed flame in an impinging turbulent stream[J]. Symposium on Combustion, 1994, 25(1):1207-1214. doi: 10.1016/S0082-0784(06)80760-5
    [6] Shepherd I G, Bourguignon E, Michou Y, et al. The burning rate in turbulent bunsen flames[J]. Symposium on Combustion, 1998, 27(1):909-916. doi: 10.1016/S0082-0784(98)80488-8
    [7] Ting D S K, Checkel M D, Haley R, et al. Early flame acceleration measurements in a turbulent spark-ignited mixture[R]. SAE Technical Paper 940687, 1994.
    [8] Yoshida A, Tsuji H. Characteristic scale of wrinkles in turbulent premixed flames[J]. Symposium on Combustion, 1982, 19(1):403-411. doi: 10.1016/S0082-0784(82)80212-9
    [9] Kobayashi H, Kawahata T, Seyama K, et al. Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2002, 29(2):1793-1800. doi: 10.1016/S1540-7489(02)80217-6
    [10] Lawn C J, Schefer R W. Scaling of premixed turbulent flames in the corrugated regime[J]. Combustion and Flame, 2006, 146(1-2):180-199. doi: 10.1016/j.combustflame.2006.03.010
    [11] Tanahashi M, Yu Y, Miyauchi T. Effects of turbulence characteristic length scale on hydrogen-air turbulent premixed flames[J]. Thermal Science and Engineering, 2001, 9:39-48. doi: 10.1007%2Fs12206-009-0409-1
    [12] Yu Y, Tanahashi M, Miyauchi T. Relation between turbulence characteristic length scale and local flame structure in turbulent premixed H2-air flames[C]. The Japanese 38th Symposium on Combustion, 2000.
    [13] Tanahashi M, Fujimura M, Miyauchi T. Coherent fine-scale eddies in turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2000, 28(1):529-535. doi: 10.1016/S0082-0784(00)80252-0
    [14] Lachauxa T, Haltera F, Chauveaua C, et al. Flame front analysis of high-pressure turbulent lean premixed methane-air flames[J]. Proceedings of the Combustion Institute, 2004, 30(1):819-826. https://www.sciencedirect.com/science/article/pii/S0082078404002437
    [15] Yuen F T C, Ömer L Gülder. Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime[J]. Proceedings of the Combustion Institute, 2009, 32(2):1747-1754. doi: 10.1016/j.proci.2008.08.005
    [16] Marshall A, Venkateswaran P, Noble D, et al. Development and characterization of a variable turbulence generation system[J]. Experiments in Fluids, 2011, 51(3):611-620. doi: 10.1007/s00348-011-1082-6
    [17] Skiba A W, Wabel T, Temme J, et al. Measurements to determine the regimes of turbulent premixed flames[C]. AIAA/SAE/ASEE Joint Propulsion Conference, 2013.
    [18] Zhang M, Wang J H, Xie Y L, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52(1):288-296.
    [19] Laws E M, Livesey J L. Flow through screens[J]. Annual Review of Fluid Mechanics, 1978, 10(1):247-266. doi: 10.1146/annurev.fl.10.010178.001335
    [20] Mazellier N, Danaila L, Renou B. Multi-scale energy injection:a new tool to generate intense homogeneous and isotropic turbulence for premixed combustion[J]. Journal of Turbulence, 2010, 11(43):1-30. https://core.ac.uk/display/49941649
    [21] Driscoll J F. Turbulent premixed combustion:Flamelet structure and its effect on turbulent burning velocities[J]. Progress in Energy and Combustion Science, 2008, 34(1):91-134. doi: 10.1016/j.pecs.2007.04.002
    [22] Zhang M, Wang J H, Xie Y L, et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames[J]. International Journal of Hydrogen Energy, 2013, 38(26):11421-11428. doi: 10.1016/j.ijhydene.2013.05.051
    [23] Kobayashi H, Hagiwara H, Kaneko H, et al. Effects of CO2 dilution on turbulent premixed flames at high pressure and high temperature[J]. Proceedings of the Combustion Institute, 2007, 31(1):1451-1458. doi: 10.1016/j.proci.2006.07.159
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  93
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 修回日期:  2018-01-02
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日