Application of femtosecond-laser spectrum technology in combustion field
-
摘要: 基于飞秒激光的燃烧诊断技术,可实现燃烧场温度、速度、组分浓度等参数的在线测量。作为一种有效的诊断工具,飞秒激光诊断技术在燃烧领域中有着广泛的应用前景,将在提高燃烧效率和降低燃烧排放等方面发挥越来越重要的作用。本文通过综述飞秒多光子激光诱导荧光技术、飞秒激光成丝诱导非线性光谱技术以及飞秒激光电子激发示踪测速技术等飞秒激光在燃烧领域的具体应用实例,概括介绍了飞秒激光燃烧诊断技术的发展。在此基础上,对飞秒激光燃烧诊断技术在未来的发展潜力进行了分析与讨论,为相关研究人员提供参考。
-
关键词:
- 飞秒激光燃烧诊断技术 /
- 飞秒多光子激光诱导荧光 /
- 飞秒激光成丝诱导非线性光谱 /
- 飞秒激光电子激发示踪测速
Abstract: Based on the femtosecond laser combustion diagnostic technology, the on-line measurements of temperature, velocity and component concentration in combustion flowfield can be realized. Femtosecond laser diagnostic technology is an effective diagnostic tool and has wide applications in combustion field. It plays an important role in improving combustion efficiency and reducing combustion emissions. In this paper, the authors reviewed several applications of femtosecond laser diagnostic technology in combustion field, such as femtosecond multi-photon laser-induced fluorescence (fs-MPLIF), filament-induced nonlinear spectroscopy (FINS) and femtosecond laser electronic excitation tagging velocimetry (FLEET). Then the authors summarized the development of femtosecond laser combustion diagnostic technology. On this basis, the prospect of the femtosecond laser combustion diagnostic technology in the future was analyzed and discussed, which would provide reference for the relevant researchers. -
表 1 飞秒多光子激光诱导荧光在燃烧领域中的应用
Table 1. Application of femtosecond multi-photon laser-induced fluorescence technology in combustion field
所测中间产物 激发激光 检测荧光 燃烧场 参考文献 波长/nm 能级跃迁 波长/nm 能级跃迁 燃烧器 火焰 OH 620*2 A-X ~310 A-X Hencken燃烧器 C2H4/air [46] H 205*2 n=1→n=3 656 n=3→n=2 Bunsen燃烧器 CH4/O2/N2 [47-50] 243*2+486 n=1→n=4 656 n=3→n=2 改进的McKenna燃烧器 CH4/air [51] O 226*2 2p3P→3p3P 845 3p3P→3s3S Bunsen燃烧器 CH4/O2/N2 [52-53] CO 230.1*2 B1Σ+←X1Σ+ 362 ~516 Hencken燃烧器 CH4/air [54-55] Kr 212.6*2 4s24p6→4s24p55p/4s24p55p′ 759 自然射流喷嘴 冷态混合气 [56] 204.1*2 4p6(1s0)→5p′[3/2]2 826 5p′[3/2]2→5s′[3/2]2 自然射流喷嘴 冷态混合气 [57] 表 2 分子示踪测速技术分类及特点
Table 2. Classification and characteristics of molecular tagging velocimetry
技术分类 示踪粒子/分子 特点 MTV 散布示踪分子 酯类 亚硝酸特丁酯[74] 可根据不同流场环境选择不同示踪分子,成像图片信噪比高、空间分辨率好;但散布示踪分子增加了系统的成本,且需要考虑散布分子的毒性、腐蚀性、是否会对燃烧场产生干扰等问题。 酮类 丁二酮(磷光)[75-78]、丙酮(荧光)[79-80] 金属 钠[81]、锶[82] 氮氧化物 NO2[83-87]、NO[88-89] 非散布示踪分子 RELIEF O2[90-93] 技术提出于20世纪80年代,并成功应用于纯氧流场中的速度测量,但在空气中的信噪比差,应用具有很大的局限性。 APART NO[94-96] 应用于空气流场中不需要引入任何其他分子,但这种测速技术在应用于燃烧场时,可能会对燃烧反应造成干扰。 OTV O3[97-98] 可应用于空气流场中的速度测量,但流场的温度严重影响示踪分子O3的浓度,进而影响测速的准确性,因此很难实现燃烧场中的速度测量。 HTV OH[99-104] 已成功应用于氢气/空气燃烧场中,但示踪分子OH的浓度会受流场中O原子浓度的影响,在燃烧场中应用受限。 附录A 文章涉及技术名称中英文对照
附录A. The technical name in both Chinese and English
全称(英文) 全称(中文) 简称 Femtosecond Degenerate Four-Wave Mixing 飞秒四波混频技术 fs-DFWM Femtosecond Coherent Anti-Stokes Raman Spectroscopy 飞秒相干反斯托克斯拉曼散射技术 fs-CARS Femtosecond Multiphoton Laser-Induced Fluorescence 飞秒多光子激光诱导荧光技术 fs-MPLIF Filament-Induced Nonlinear Spectroscopy 飞秒激光成丝诱导非线性光谱技术 FINS Femtosecond Laser Electronic Excitation Tagging 飞秒激光电子激发示踪测速技术 FLEET Laser-Induced Fluorescence 激光诱导荧光技术 LIF Two-Photon Laser-Induced Fluorescence 双光子激光诱导荧光技术 TPLIF Nanosecond Laser-Induced Breakdown Spectroscopy 纳秒激光诱导击穿 ns-LIBS Molecular Tagging Velocimetry 分子示踪测速技术 MTV Electron Beam Fluorescence 电子束荧光技术 EBF Laser-Doppler Velocimetry 激光多普勒测速技术 LDV Phase Doppler Anemometer 相位多普勒测速技术 PDA Particle Image Velocimetry 粒子成像测速技术 PIV Raman Excitation Plus Laser-Induced Electronic Fluorescence 拉曼激发激光诱导电子荧光测速技术 RELIEF Air Photolysis And Recombination Tracking 空气光解及重组示踪测速技术 APART Ozone Tagging Velocimetry 臭氧标记测速技术 OTV Hydroxyl Tagging Velocimetry 羟基标记测速技术 HTV Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging 双光子共振吸收飞秒激光电子激发示踪测速技术 STARFLEET -
[1] 汪亮.燃烧实验诊断学[M].北京:国防工业出版社, 2011.Wang L. Combustion experimental diagnostics[M]. Beijing:National Defense Industry Press, 2011. [2] 熊姹, 范玮.应用燃烧诊断学[M].西安:西北工业大学出版社, 2005.Xiong C, Fan W. Applied combustion diagnostics[M]. Xi'an:Northwestern Polytechnical University Press, 2005. [3] Kohse-Höinghaus K, Barlow R S, Aldén M, et al. Combustion at the focus:laser diagnostics and control[J]. Proceedings of the Combustion Institute, 2005, 30(1):89-123. doi: 10.1016/j.proci.2004.08.274 [4] Aldén M, Bood J, Li Z, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1):69-97. doi: 10.1016/j.proci.2010.09.004 [5] Hanson R K, Seitzman J M, Paul P H. Planar laser-fluorescence imaging of combustion gases[J]. Applied Physics B, 1990, 50(1):441-454. doi: 10.1007/BF00408770 [6] Crosley D R, Smith G P. Laser-Induced fluorescence spectroscopy for combustion diagnostics[J]. Optical Engineering, 1983, 22(5):545-553. doi: 10.1117/12.7973194.full [7] Aldén M, Omrane A, Richter M, et al. Thermographic phosphors for thermometry:A survey of combustion applications[J]. Progress in Energy & Combustion Science, 2011, 37(4):422-461. http://cn.bing.com/academic/profile?id=52e5959bc818b0b4138cfc630fb5b292&encoded=0&v=paper_preview&mkt=zh-cn [8] Chan V SS, Turner J T. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry[J]. Optics & Laser Technology, 2000, 32(7-8):557-566. https://www.sciencedirect.com/science/article/pii/S0030399200000979 [9] Shaddix C R, Smyth K C. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames[J]. Combustion & Flame, 1996, 107(4):418-452. https://www.sciencedirect.com/science/article/pii/S0010218096001071 [10] 胡志云, 刘晶儒, 张振荣, 等.激光燃烧诊断技术及应用研究进展[J].中国工程科学, 2009, 11(11):45-50. doi: 10.3969/j.issn.1009-1742.2009.11.007Hu Z Y, Liu J R, Zhang Z R, et al. The research progress of laser combustion diagnostics techniques and applications[J]. Engineering Sciences, 2009, 11(11):45-50. doi: 10.3969/j.issn.1009-1742.2009.11.007 [11] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Optics Letters, 1991, 16(1):42-44. doi: 10.1364/OL.16.000042 [12] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 1999, 16(4):637-650. doi: 10.1364/JOSAB.16.000637 [13] Brodeur A, Chien C Y, Kosareva O G, et al. Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(17):1332-1334. doi: 10.1364/OL.22.001332 [14] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B:Lasers and Optics, 2003, 76(3):337-340. doi: 10.1007/s00340-003-1115-9 [15] Chin S L. Femtosecond laser filamentation[Z]. New York, NY: Springer, 2010, 55: 137. [16] Hornung T, Skenderovi H, Kompa K, et al. Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses[J]. Journal of Raman Spectroscopy, 2004, 35(11):934-938. doi: 10.1002/(ISSN)1097-4555 [17] He P, Fan R, Chen D, et al. Ultrafast time-resolved coherent degenerate four-wave-mixing spectroscopy for investigating molecular dynamics in different states[J]. Optics & Laser Technology, 2011, 43(8):1458-1461. http://cn.bing.com/academic/profile?id=7f1e4eeebe6aa44ee5162b9d11bc3fee&encoded=0&v=paper_preview&mkt=zh-cn [18] Sun Z W, Li Z S, Li B, et al. Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing[J]. Journal of Raman Spectroscopy, 2011, 42(10):1828-1835. doi: 10.1002/jrs.v42.10 [19] Knopp G, Radi P P, Sych Y, et al. Dissection of dispersed off-resonant femtosecond degenerate four-wave mixing of O2[J]. Journal of Raman Spectroscopy, 2011, 42(10):1848-1853. doi: 10.1002/jrs.v42.10 [20] Matylitsky V V, Jarz Ba W, Riehn C, et al. Femtosecond degenerate four-wave mixing study of benzene in the gas phase[J]. Journal of Raman Spectroscopy, 2002, 33(11-12):877-883. doi: 10.1002/(ISSN)1097-4555 [21] Riehn C, Matylitsky V V, Gelin M F. Time domain fingerprints of a 'perpendicular' rotational Raman band:formic acid studied by femtosecond degenerate four-wave mixing[J]. Journal of Raman Spectroscopy, 2003, 34(12):1045-1050. doi: 10.1002/(ISSN)1097-4555 [22] Bohlin A, Mann M, Patterson B D, et al. Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy:Time-resolved probing of flame wall interactions[J]. Proceedings of the Combustion Institute, 2015, 35(3):3723-3730. doi: 10.1016/j.proci.2014.05.124 [23] Richardson D R, Lucht R P, Kulatilaka W D, et al. Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements[J]. Journal of the Optical Society of America B, 2013, 30(1):188-196. doi: 10.1364/JOSAB.30.000188 [24] Dennis C N, Slabaugh C D, Boxx I G, et al. Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5kHz in a Gas Turbine Model Combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3):3731-3738. doi: 10.1016/j.proci.2014.06.063 [25] Kearney S P, Guildenbecher D R, Hoffmeister K N G, et al. Hybrid fs/ps rotational CARS temperature and oxygen measurements and soot LⅡ measurements in a turbulent C2H4-fueled jet flame[C]. 54th AIAA Aerospace Sciences Meeting, San Diego, California, 2016. [26] Zhao Y, Zhang S, Zhang Z, et al. Molecular vibrational dynamics in ethanol studied by femtosecond CARS[J]. Optics Communications, 2015, 334:319-322. doi: 10.1016/j.optcom.2014.08.061 [27] Xia Y, Zhao Y, Wang Z, et al. Investigation of vibrational characteristics in BBO crystals by femtosecond CARS[J]. Optics & Laser Technology, 2012, 44(7):2049-2052. https://www.sciencedirect.com/science/article/pii/S0030399212001429 [28] Kozai T, Kayano Y, Aoi T, et al. Coherent molecular vibrational dynamics of CH2 stretching modes in polyethylene studied by femtosecond-CARS[J]. Journal of Raman Spectroscopy, 2015, 46(4):384-387. doi: 10.1002/jrs.v46.4 [29] Pestov D, Zhi M, Sariyanni Z, et al. Femtosecond CARS of methanol-water mixtures[J]. Journal of Raman Spectroscopy, 2006, 37(1-3):392-396. doi: 10.1002/(ISSN)1097-4555 [30] Kiefer J, Namboodiri M, Kazemi M M, et al. Time-resolved femtosecond CARS of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate[J]. Journal of Raman Spectroscopy, 2015, 46(8):722-726. doi: 10.1002/jrs.4692 [31] Zhao Y, Zhang S, Zhou B, et al. Molecular vibrational dynamics of rhodamine B dye in solution studied by femtosecond CARS[J]. Vibrational Spectroscopy, 2014, 73:24-27. doi: 10.1016/j.vibspec.2014.04.001 [32] Zhao Y, Zhang S, Zhou B, et al. Spectrally dispersed femtosecond CARS investigation of vibrational characteristics in ethanol[J]. Journal of Raman Spectroscopy, 2014, 45(9):826-829. doi: 10.1002/jrs.v45.9 [33] 张立荣, 胡志云, 叶景峰, 等.移动式CARS系统测量超声速燃烧室出口温度[J].中国激光, 2013, 40(4):201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htmZhang L R, Hu Z Y, Ye J F, et al. Mobile CARS temperature measurements at exhaust of supersonic combustor[J]. Chinese Journal of Lasers, 2013, 40(4):201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htm [34] 胡志云, 张振荣, 刘晶儒, 等.宽带相干反斯托克斯拉曼散射法诊断固体燃剂燃烧场[J].强激光与粒子束, 2004, 16(1):19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy200401005&dbname=CJFD&dbcode=CJFQHu Z Y, Zhang Z R, Liu J R, et al. Broad-band CARS diagnostics of solid propellant combustion[J]. High Power Laser and Particle Beams, 2004, 16(1):19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy200401005&dbname=CJFD&dbcode=CJFQ [35] 陶波, 王晟, 胡志云, 等. TDLAS与CARS共线测量发动机温度[J].工程热物理学报, 2015, 36(10):2282-2286. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201511046.htmTao B, Wang S, Hu Z Y, et al. Measurements of engine combustion temperature by using coaxial TDLAS and CARS technique[J]. Journal of Engineering Thermophysics, 2015, 36(10):2282-2286. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201511046.htm [36] 张天天. 飞秒时间分辨CARS光谱在超快动力学及燃烧测温应用研究[D]. 哈尔滨工业大学, 2010.Zhang T T. Femtosecond time-resolved CARS spectroscopy for the study of ultra-fast dynamics and temperature measurement[D]. Harbin: Harbin Institute of Technology, 2010. [37] 李金钊. 飞秒CARS在燃烧测温中的应用研究[D]. 哈尔滨工业大学, 2013.Li J Z. Femtosecond CARS for the study of temperature measurement[D]. Harbin: Harbin Institute of Technology, 2013. [38] 赵阳. 飞秒CARS在分子超快动力学与气体燃烧测温中的应用研究[D]. 哈尔滨工业大学, 2015.Zhao Y. Femtosecond CARS applications in molecular ultrafast dynamics and flame temperature measurements[D]. Harbin Institute of Technology, 2013. [39] Zheltikov A M. Coherent anti-Stokes Raman scattering:from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations[J]. Journal of Raman Spectroscopy, 2000, 31(8-9):653-667. doi: 10.1002/(ISSN)1097-4555 [40] Lucht R P, Salmon J T, King G B, et al. Two-photon-excited fluorescence measurement of hydrogen atoms in flames[J]. Optics Letters, 1983, 8(7):365-367. doi: 10.1364/OL.8.000365 [41] Gathen V S V D, Niemi K. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet[J]. Plasma Sources Science & Technology, 2005, 14(2):375-386. http://cn.bing.com/academic/profile?id=858b2e646b5d49e1803e007f5d6a4b43&encoded=0&v=paper_preview&mkt=zh-cn [42] Rosell J, Sjöholm J, Richter M, et al. Comparison of three schemes of two-photon laser-induced fluorescence for CO detection in flames[J]. Applied Spectroscopy, 2013, 67(3):314-320. doi: 10.1366/12-06704 [43] Li B, Zhang D, Yao M, et al. Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence[J]. Proceedings of the Combustion Institute, 2017, 36(3):4487-4495. doi: 10.1016/j.proci.2016.07.082 [44] Kulatilaka W D, Frank J H, Patterson B D, et al. Analysis of 205-nm photolytic production of atomic hydrogen in methane flames[J]. Applied Physics B, 2009, 97(1):227-242. doi: 10.1007/s00340-009-3474-3 [45] Brackmann C, Sjöholm J, Rosell J, et al. Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO[J]. Proceedings of the Combustion Institute, 2013, 34(2):3541-3548. doi: 10.1016/j.proci.2012.05.011 [46] Stauffer H U, Kulatilaka W D, Gord J R, et al. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation[J]. Optics Letters, 2011, 36(10):1776-1778. doi: 10.1364/OL.36.001776 [47] Kulatilaka W D, Gord J R, Katta V R, et al. Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen[J]. Optics Letters, 2012, 37(15):3051-3053. doi: 10.1364/OL.37.003051 [48] Hall C A, Kulatilaka W D, Gord J R, et al. Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames[J]. Combustion and Flame, 2014, 161(11):2924-2932. doi: 10.1016/j.combustflame.2014.05.015 [49] Kulatilaka W D, Gord J R, Roy S. Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser[J]. Applied Physics B, 2014, 116(1):7-13. doi: 10.1007/s00340-014-5845-7 [50] Kulatilaka W, Roy S, Gord J. Multi-photon fluorescence imaging of flame species using femtosecond excitation[C]. 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, New Orleans, Louisiana, 2012. [51] Li B, Zhang D, Li X, et al. Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence[J]. International Journal of Hydrogen Energy, 2017, 42(6):3876-3880. doi: 10.1016/j.ijhydene.2016.05.294 [52] Kulatilaka W D, Roy S, Jiang N, et al. Photolytic-interference-free, femtosecond, two-photon laser-induced fluorescence imaging of atomic oxygen in flames[J]. Applied Physics B, 2016, 122(2):1-7. doi: 10.1007/s00340-016-6330-2 [53] Schmidt J B, Sands B L, Kulatilaka W D, et al. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet[J]. Plasma Sources Science & Technology, 2015, 24(3):1-6. doi: 10.1088/1361-6463/50/1/015204/pdf [54] Richardson D R, Roy S, Gord J R. Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames[J]. Optics Letters, 2017, 42(4):875-878. doi: 10.1364/OL.42.000875 [55] Li B, Li X, Zhang D, et al. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence[J]. Optics Express, 2017, 25(21):25809-25818. doi: 10.1364/OE.25.025809 [56] Richardson D R, Jiang N, Stauffer H U, et al. Mixture-fraction imaging at 1kHz using femtosecond laser-induced fluorescence of krypton[J]. Optics Letters, 2017, 42(17):3498-3501. doi: 10.1364/OL.42.003498 [57] Wang Y, Kulatilaka W D. Mixture fraction imaging using femtosecond TPLIF of Krypton[C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017. [58] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75. doi: 10.1364/OL.20.000073 [59] Chin S L, Xu H. Tunnel ionization, population trapping, filamentation and applications[J]. Journal of Physics B:Atomic Molecular & Optical Physics, 2016, 49(22):222003. doi: 10.1088/0953-4075/49/22/222003/meta [60] Xu H, Cheng Y, Chin S, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3):275-293. http://www.lasun-jlu.cn/LaSuN/upload/file/publications/xuhuailiang_LPR_2015.pdf [61] Kasparian J, Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 2008, 16(1):466-493. doi: 10.1364/OE.16.000466 [62] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4):47-189. doi: 10.1016/j.physrep.2006.12.005 [63] Bruno A, Ossler F, de Lisio C, et al. Detection of fluorescent nanoparticles in flame with femtosecond laser-induced fluorescence anisotropy[J]. Optics Express, 2008, 16(8):5623-5632. doi: 10.1364/OE.16.005623 [64] 李玉同, 张杰, 陈黎明, 等.对飞秒激光等离子体中成丝现象的研究[J].物理学报, 2001, 50(2):204-208. doi: 10.7498/aps.50.204Li Y T, Zhang J, Chen L M, et al. Study on filamentation in femtosecond laser plasmas[J]. Acta Physica Sinica, 2001, 50(2):204-208. doi: 10.7498/aps.50.204 [65] 李贺龙. 超快强场激光在燃烧场中的传输特性和非线性光谱研究[D]. 长春: 吉林大学, 2016.Li H L. Investigations on the propagation properties and nonlinear spectroscopy of ultrafast and ultrastrong laser in combustion fields[D]. Changchun: Jilin University, 2006. [66] Li H L, Xu H L, Yang B S, et al. Sensing combustion intermediates by femtosecond filament excitation[J]. Optics Letters, 2013, 38(8):1250-1252. doi: 10.1364/OL.38.001250 [67] Li H, Wei X, Xu H, et al. Femtosecond laser filamentation for sensing combustion intermediates:A comparative study[J]. Sensors and Actuators B:Chemical, 2014, 203:887-890. doi: 10.1016/j.snb.2014.06.086 [68] Li H, Chu W, Xu H, et al. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing[J]. Scientific Reports, 2016, 6(1):27340. doi: 10.1038/srep27340 [69] Li H, Chu W, Zang H, et al. Critical power and clamping intensity inside a filament in a flame[J]. Optics Express, 2016, 24(4):3424-3431. doi: 10.1364/OE.24.003424 [70] Boden F, Fl N L M. Particle Image Velocimetry[M]. John Wiley & Sons Ltd, 2010:247-269. [71] Allen M, Davis S, Kessler W, et al. Velocity field imaging in supersonic reacting flows near atmospheric pressure[J]. AIAA Journal, 1994, 32(8):1676-1682. doi: 10.2514/3.12159 [72] Chen F, Li H, Hu H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Review Paper, 2015, 31(4):425-445. doi: 10.1007/s10409-015-0464-z.pdf [73] 叶景峰, 胡志云, 刘晶儒, 等.分子标记速度测量技术及应用研究进展[J].实验流体力学, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htmYe J F, Hu Z Y, Liu J R, et al. Development and application of molecular tagging velocity[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htm [74] Krüger S, Grünefeld G. Stereoscopic flow-tagging velocimetry[J]. Applied Physics B, 1999, 69(5):509-512. doi: 10.1007/s003400050844 [75] Mittal M, Sadr R, Schock H J, et al. In-cylinder engine flow measurement using stereoscopic molecular tagging velocimetry (SMTV)[J]. Experiments in Fluids, 2009, 46(2):277-284. doi: 10.1007/s00348-008-0557-6 [76] Ismailov M M, Schock H J, Fedewa A M. Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry[J]. Experiments in Fluids, 2006, 41(1):57-65. doi: 10.1007/s00348-006-0150-9 [77] Stier B, Koochesfahani M M. Molecular tagging velocimetry (MTV) measurements in gas phase flows[J]. Experiments in Fluids, 1999, 26(4):297-304. doi: 10.1007/s003480050292 [78] Hiller B, Booman R A, Hassa C, et al. Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl[J]. Review of Scientific Instruments, 1985, 55(12):1964-1967. http://cn.bing.com/academic/profile?id=402581c6c2c940de52a080b38e23760a&encoded=0&v=paper_preview&mkt=zh-cn [79] Lempert W R, Jiang N, Sethuram S, et al. Molecular tagging velocimetry measurements in supersonic microjets[J]. AIAA Journal, 2015, 40(40):1065-1070. http://cn.bing.com/academic/profile?id=a1fd7313abf60235d60b9b1c378fcf77&encoded=0&v=paper_preview&mkt=zh-cn [80] Lempert W R, Boehm M, Jiang N, et al. Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows[J]. Experiments in Fluids, 2003, 34(3):403-411. doi: 10.1007/s00348-002-0576-7 [81] Barker P, Thomas A, Rubinsztein-Dunlop H, et al. Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 1995, 50(11):1301-1310. doi: 10.1016/0584-8547(95)01353-X [82] Rubinsztein-Dunlop H, Littleton B, Barker P, et al. Ionic strontium fluorescence as a method for flow tagging velocimetry[J]. Experiments in Fluids, 2001, 30(1):36-42. doi: 10.1007/s003480000132 [83] Sanchez-Gonzalez R, Bowersox R D, North S W. Simultaneous velocity and temperature measurements in gaseousflowfields using the vibrationally excited nitric oxide monitoring technique:a comprehensive study[J]. Applied Optics, 2012, 51(9):1216-1228. doi: 10.1364/AO.51.001216 [84] Sanchez-Gonzalez R, Srinivasan R, Bowersox R D W, et al. Simultaneous velocity and temperaturemeasurements in gaseous flow fields using the VENOM technique[J]. Optics Letters, 2011, 36(2):196-198. doi: 10.1364/OL.36.000196 [85] Orlemann C, Schulz C, Wolfrum J. NO-flow tagging by photodissociation of NO2-A new approach for measuring small-scale flow structures[J]. Chemical Physics Letters, 1999, 307:15-20. doi: 10.1016/S0009-2614(99)00512-6 [86] Jiang N, Nishihara M, Lempert W R. Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate[J]. Applied Physics Letters, 2010, 97(22):221103. doi: 10.1063/1.3522654 [87] Hsu A G, Srinivasan R, Bowersox R D W, et al. Molecular tagging using vibrationally excited nitric oxide in anunderexpanded jet flowfield[J]. AIAA Journal, 2009, 47(11):2597-2604. doi: 10.2514/1.39998 [88] Pan F, Sanchez-Gonzalez R, Mcilvoy M H, et al. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7):1376-1379. doi: 10.1364/OL.41.001376 [89] Danehy P M. Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide[J]. AIAA Journal, 2003, 41(41):263-271. http://cn.bing.com/academic/profile?id=e9611bbca7acfb445f20bb89903e699e&encoded=0&v=paper_preview&mkt=zh-cn [90] Miles R, Cohen C, Connors J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 11(12):861-863. doi: 10.1007/BF00190270 [91] Miles R B, Zhou D, Zhang B, et al. Fundamental turbulence measurements by relief flow tagging[J]. AIAA Journal, 1991, 29(3):447-452. http://cn.bing.com/academic/profile?id=0331f53c5aa43822f6fa2bc451414d78&encoded=0&v=paper_preview&mkt=zh-cn [92] Miles R B, Grinstead J, Kohl R H, et al. The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies[J]. Measurement Science & Technology, 2000, 11(11):1272-1281. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.6044&rep=rep1&type=pdf [93] 施翔春, 王杰, 肖绪辉, 等.拉曼激发激光诱导电子荧光流场测量系统中标记过程的研究[J].光学学报, 2001, 21(2):206-210. http://d.old.wanfangdata.com.cn/Periodical/gxxb200102019Shi X C, Wang J, Xiao X H, et al. Tagging procedures of Raman excitation plus laser induced electronic fluorescence flow velocimetry[J]. Acta Optica Sinica, 2001, 21(2):206-210. http://d.old.wanfangdata.com.cn/Periodical/gxxb200102019 [94] Laan W P N V, Tolboom R A L, Dam N J, et al. Molecular tagging velocimetry in the wake of an object in supersonic flow[J]. Experiments in Fluids, 2003, 34(4):531-534. doi: 10.1007/s00348-003-0593-1 [95] Dam N, Kleindouwel R J, Sijtsema N M, et al. Nitric oxide flow tagging in unseeded air[J]. Optics Letters, 2001, 26(1):36-38. doi: 10.1364/OL.26.000036 [96] Sijtsema N M, Dam N J, Kleindouwel R J H, et al. Air photolysis and recombination tracking:a new molecular tagging velocimetry scheme[J]. AIAA Journal, 2002, 40(6):1061-1064. doi: 10.2514/2.1788 [97] Pitz R W, Brown T M, Nandula S P, et al. Unseeded velocity measurement by ozone tagging velocimetry[J]. Optics Letters, 1996, 21(10):755-757. doi: 10.1364/OL.21.000755 [98] Pitz R W, Ribarov L A, Wehrmeyer J A, et al. Ozone tagging velocimetry using narrowband excimer lasers[J]. AIAA Journal, 1999, 37(37):708-714. http://cn.bing.com/academic/profile?id=14e09af29315be06c2bdb1162fab6b37&encoded=0&v=paper_preview&mkt=zh-cn [99] Lahr M D, Pitz R W, Douglas Z W, et al. Hydroxyl-tagging-velocimetry measurements of a supersonic flow over a cavity[J]. Journal of Propulsion & Power, 2010, 26(4):790-797. http://cn.bing.com/academic/profile?id=5eadf7d80c46bf7e915fed54e4e8aa44&encoded=0&v=paper_preview&mkt=zh-cn [100] Ribarov L A, Wehrmeyer J A, Hu S, et al. Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows[J]. Experiments in Fluids, 2004, 37(1):65-74. doi: 10.1007/s00348-004-0785-3 [101] Wehrmeyer J A, Ribarov L A, Oguss D A, et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(33):6912-6917. doi: 10.1364/AO.38.006912 [102] Ribarov L A, Wehrmeyer J A, Pitz R W, et al. Hydroxyl tagging velocimetry (HTV) in experimental air flows[J]. Applied Physics B:Lasers and Optics, 2002, 74(2):175-183. doi: 10.1007/s003400100777 [103] Boedeker L R. Velocity measurement by H2O photolysis and laser-induced fluorescence of OH[J]. Optics Letters, 1989, 14(10):473-475. doi: 10.1364/OL.14.000473 [104] 叶景峰, 邵珺, 李国华, 等. 羟基分子标记技术用于超音速流动速度测量[C]. 第十六届全车激波与激波管学术会议, 河南洛阳, 2014.Ye J F, Shao J, Li G H, et al. Supersonic flow velocity measurements by hydroxyl tagging velocimetry[C]. 16th National Shock and Shock Tube Academic Conference, Luoyang Henan, 2014. [105] Michael J B, Edwards M R, Dogariu A, et al. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J]. Applied Optics, 2011, 50(26):5158-5162. doi: 10.1364/AO.50.005158 [106] Jiang N, Halls B R, Stauffer H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET) velocimetry in flow and combustion diagnostics: 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference[Z]. Washington D C, 2016. [107] Edwards M R, Dogariu A, Miles R B. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging[J]. AIAA Journal, 2015, 53(3):1-9. http://adsabs.harvard.edu/abs/2015AIAAJ..53.2280E [108] Edwards M R, Michael J B, Calvert N D, et al. Femtosecond laser electronic excitation tagging (FLEET) for imaging flow structure in unseeded hot or cold air or nitrogen[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 2013. -