Simultaneous multi-species PLIF diagnostic on CH4-Air inverse diffusion jet flame
-
摘要: 多组分同步平面激光诱导荧光技术在研究火焰结构和燃烧反应中间产物二维分布等方面有着重要作用。为了研究CH4-Air反扩散射流火焰,搭建了OH/CH2O/丙酮(Acetone)多组分同步平面激光诱导荧光实验系统。系统由2套激光器、2部ICCD相机、1组时序控制器以及光学系统构成。通过对不同组分物质分子有效激发策略、时序控制方法以及双ICCD成像技术进行了分析,最终实现了对火焰反应区、预热区以及燃料分布区域等火焰结构信息瞬态测量及可视化。基于该实验系统,对反扩散射流火焰进行了实验研究。研究结果表明,反扩散射流火焰形式既不同于传统的预混火焰,也不同于常规的扩散火焰,更多表现为部分预混的扩散火焰;较之OH*化学发光成像,多组分平面激光诱导荧光结构更能准确认识火焰的基本形态和燃烧模式,在基础燃烧和工业研究中都具有重要的应用价值。Abstract: The simultaneous multi-species Planar Laser Induced Fluorescence technique plays an important role in studying the flame structure and the two-dimensional distribution of intermediate species in combustion.The experimental system of OH/CH2O/Acetone-PLIF was built in order to study the CH4-Air inverse diffusion jet (IDJ) flame.The system consists of two sets of lasers, two intensifier-CCD cameras, a temporal controller and several lenses.The strategy of fluorescence excitation, the method of synchronous timing control and image calibration procedures are discussed.The IDJ flame was studied using the simultaneous multi-species PLIF technique, and the reaction zone, pre-heating zone and fuel zone of IDJ flame were determined.Experimental results suggest that the IDJ flame is different from either the normal diffusion flame or the premixed jet flame.The behavior of this type of flame reveals similarity to the partially premixed flame.Compared to OH chemilumiscence images, simultaneous multi-species PLIF can provide more detail and information about the flame structure and it has huge potential in fundamental combustion studies and industrial burner experiments.
-
表 1 不同工况条件下的参数
Table 1. Parameters at various cases of IDJ flame
Case number Air flow CH4 flow Air velocity CH4 velocity Velocity ratio (Rv) Equivalence ratio (Req) M Re* /(N·m3·min-1) /(N·m3·min-1) /(m·s-1) /(m·s-1) a 0.006 0.002 49.76 0.20 675 2.96 1.13×10-6 5259.812 b 0.007 0.002 58.03 0.20 787.5 2.54 8.33×10-7 6136.241 c 0.008 0.002 66.31 0.20 900 2.22 6.38×10-7 7012.693 d 0.008 0.0025 66.31 0.25 720 2.78 9.97×10-7 7012.975 e 0.008 0.003 66.31 0.30 600 3.33 1.44×10-6 7013.319 f 0.008 0.0035 66.31 0.35 514.29 3.89 1.95×10-6 7013.726 g 0.008 0.004 66.31 0.40 450 4.44 2.55×10-6 7014.196 h 0.008 0.005 66.31 0.50 360 5.55 3.99×10-6 7015.323 i 0.008 0.008 66.31 0.80 225 8.88 1.02×10-5 7020.203 j 0.009 0.002 74.60 0.20 1012.5 1.97 5.04×10-7 7889.162 k 0.01 0.002 82.89 0.20 1125 1.78 4.08×10-7 8765.641 l 0.011 0.002 91.18 0.20 1237.5 1.62 3.37×10-7 9642.129 -
[1] Mc Craw J L, Moore N J, Lyons K M. Observations on upstream flame propagation in the ignition of hydrocarbon jets[J]. Flow, Turbulence and Combustion, 2007, 79(1), 83-97. doi: 10.1007/s10494-007-9071-9 [2] 李新宇, 代正华, 徐月亭, 等.甲烷/氧气层流反扩散火焰形态及滞后特性研究[J].物理学报, 2014, 64(2):024704. http://mall.cnki.net/magazine/magadetail/WLXB201502.htmLi X Y, Dai Z H, Xu Y T, et al. Mode and hysteresis of laminar methane/oxygen inverse diffusion flame[J]. Acta Phys Sin, 2014, 64(2):024704. http://mall.cnki.net/magazine/magadetail/WLXB201502.htm [3] 仇晓龙, 吴玉新, 张海, 等.一维湍流模型对He平面羽流和CH4/H2/N2射流火焰的数值模拟[J].工程热物理学报, 2012, 33(6):1073-1076. http://jetp.iet.cn/CN/abstract/abstract6941.shtmlQiu X L, Wu Y X, Zhang H, et al. Simulation of He plumes and CH4/H2/N2 flames with one dimensional turbulence model[J]. Journal of Engineering Thermophysics, 2012, 33(6):1073-1076. http://jetp.iet.cn/CN/abstract/abstract6941.shtml [4] Sobiesiak A, Wenzell J C. Characteristics and structure of inverse flames of natural gas[J]. Proceedings of the Combustion Institute, 2005, 30(1):743-749. doi: 10.1016/j.proci.2004.08.173 [5] Garten B, Hunger F, Messig D, et al. Detailed radiation modeling of a partial-oxidation flame[J]. International Journal of Thermal Sciences, 2015, 87:68-84. doi: 10.1016/j.ijthermalsci.2014.07.022 [6] Elbaz A M, Roberts W L. Flame structure of methane inverse diffusion flame[J]. Experimental Thermal and Fluid Science, 2014, 56:23-32. doi: 10.1016/j.expthermflusci.2013.11.011 [7] Dong L L, Cheung C S, Leung C W. Heat transfer characteristics of an impinging inverse diffusion flame jet-Part Ⅰ:Free flame structure[J]. International Journal of Heat and Mass Transfer, 2007, 50(25):5108-5123. https://www.sciencedirect.com/science/article/pii/S0017931007004383 [8] Aldén M, Bood J, Li Z, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1):69-97. doi: 10.1016/j.proci.2010.09.004 [9] Li Z S, Li B, Sun Z W, et al. Turbulence and combustion interaction:high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion and Flame, 2010, 157(6):1087-1096. doi: 10.1016/j.combustflame.2010.02.017 [10] 翁武斌, 王智化, 何勇, 等.甲烷湍流射流火焰锋面结构的激光PLIF测量[J].工程热物理学报, 2014, 35(11):2308-2312. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201411043.htmWeng W B, Wang Z H, He Y, et al. The methane turbulent jet flame front structure measurement with PLIF technique[J]. Journal of Engineering Thermophysics, 2014, 35(11):2308-2312. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201411043.htm [11] Micka D J, Driscoll J F. Stratified jet flames in a heated (1390K) air cross-flow with autoignition[J]. Combustion and Flame, 2012, 159(3):1205-1214. doi: 10.1016/j.combustflame.2011.10.013 [12] 耿辉, 翟振辰, 桑艳, 等.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001Geng H, Zhai Z C, Sang Y, et al. Reveal the flame structure of supersonic combustion using OH-PLIF technology[J]. Journal of National University of Defense Technology, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001 [13] Chen S, SuT, Yang F R, et al. Calibration method for 2D instantaneous OH-PLIF temperature measurements in flame[J]. Chin Opt Let, 2013, 11(5):65-68. http://cn.bing.com/academic/profile?id=3e066f82fa6d1c5a9125f32ec0c71268&encoded=0&v=paper_preview&mkt=zh-cn [14] Zhou B, Brackmann C, Li Z, et al. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 2015, 35(2):1409-1416. doi: 10.1016/j.proci.2014.06.107 [15] 朱家健, 赵国焱, 龙铁汉, 等. OH和CH2O平面激光诱导荧光同时成像火焰结构[J].实验流体力学, 2016, 30(5):55-60, 87. http://html.rhhz.net/SYLTLX/html/2016-5-55.htmZhu J J, Zhao G Y, Long T H, et al. Simultaneous OH and CH2O PLIF imaging of flame structures[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5):55-60, 87. http://html.rhhz.net/SYLTLX/html/2016-5-55.htm [16] Harrington J E, Smyth K C. Laser-induced fluorescence measurements of formaldehyde in a methane/air diffusion flame[J]. Chemical Physics Letters, 1993, 202(3-4):196-202. doi: 10.1016/0009-2614(93)85265-P [17] Bäuerle B, Warnat J, Behrendt F. Time-resolved investigation of hot spots in the end gas of an SI engine by means of 2-D double-pulse lif of formaldehyde[C]. 26th Symposium (International) on Combustion, 1996. [18] Paul P H, Najm H N. Planar laser-induced fluorescence imaging of flame heat release rate[C]. 27th Symposium (International) on Combustion, 1998. [19] Lee T W, Fenton M, Shankland R. Effects of variable partial premixing on turbulent jet flame structure[J]. Combustion and Flame, 1997, 109(4):536-548. doi: 10.1016/S0010-2180(97)00033-3 -