留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热膜式剪应力传感器在破碎波作用下的应用初探

郝思禹 夏云峰 徐华 蔡喆伟

郝思禹, 夏云峰, 徐华, 等. 热膜式剪应力传感器在破碎波作用下的应用初探[J]. 实验流体力学, 2017, 31(3): 60-65. doi: 10.11729/syltlx20170037
引用本文: 郝思禹, 夏云峰, 徐华, 等. 热膜式剪应力传感器在破碎波作用下的应用初探[J]. 实验流体力学, 2017, 31(3): 60-65. doi: 10.11729/syltlx20170037
Hao Siyu, Xia Yunfeng, Xu Hua, et al. Preliminary application of hot-film wall shear stress sensor under breaking waves[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 60-65. doi: 10.11729/syltlx20170037
Citation: Hao Siyu, Xia Yunfeng, Xu Hua, et al. Preliminary application of hot-film wall shear stress sensor under breaking waves[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 60-65. doi: 10.11729/syltlx20170037

热膜式剪应力传感器在破碎波作用下的应用初探

doi: 10.11729/syltlx20170037
基金项目: 

国家重大科学仪器设备开发专项项目 2013YQ040911

国家自然科学基金项目 51309158

详细信息
    作者简介:

    郝思禹(1989-), 男, 江苏建湖人, 博士研究生。研究方向:河口海岸及近海工程水动力环境。通信地址:江苏省南京市鼓楼区虎踞关34号南京水利科学研究院河流海岸研究所(210024)

    通讯作者:

    郝思禹, E-mail:haosiyu@whu.edu.cn

  • 中图分类号: TV131

Preliminary application of hot-film wall shear stress sensor under breaking waves

  • 摘要: 破波区床面剪应力的正确认知对于揭示海岸泥沙输运以及地貌演变的机理具有重要意义。波浪破碎以后带来的紊动和涡旋会对床面剪应力产生显著的影响。采用MEMS柔性热膜式壁面剪应力传感器在波浪水槽中开展了破碎波作用下的床面剪应力测量应用测试。实验结果表明该壁面剪应力传感器可以应用于破碎波作用下的床面剪应力测量。在破波点之前可以根据近底流速辅助该传感器判断床面剪应力的方向。床面剪应力在波浪破碎之前变化较为平缓,在波浪破碎之后床面剪应力的波动和极值都会增大。斜坡上沿程最大床面剪应力均值的极值出现于卷破水舌入射点之后。
  • 图  1  MEMS柔性热膜式壁面剪应力传感器

    Figure  1.  MEMS flexible hot-film wall shear stress sensor

    图  2  柔性热膜式壁面剪应力传感器工作原理

    Figure  2.  Operating principle of flexible hot-film shear stress sensor

    图  3  波浪实验水槽

    Figure  3.  Wave flume used for the test

    图  4  波浪水槽实验布置图

    Figure  4.  Setup of the experimental wave flume

    图  5  安装于实验斜坡上的剪应力传感器

    Figure  5.  Wall shear stress sensor installed on the experimental slope

    图  6  测量断面H2处床面剪应力与流速对比图

    Figure  6.  Bed shear stress and measured velocity at Section H2

    图  7  H5断面波浪破碎过程

    Figure  7.  Snapshot of breaking process at Section H5

    图  8  斜坡沿程各断面的床面剪应力时间序列

    Figure  8.  Time series of bed shear stress along the slope

    图  9  最大底部剪应力均值沿斜坡分布

    Figure  9.  Distribution of average maximum bed shear stress along the slope

    表  1  破波实验的测量断面布置

    Table  1.   Measurement sections of bed shear stress

    表  2  破波实验波浪要素

    Table  2.   Wave parameters for breaking wave experiment

  • [1] 邹志利.海岸动力学[M].第四版.北京:人民交通出版社, 2009.

    Zou Z L. Coastal hydrodynamics[M]. 4th ed. Bejing: China Communications Press, 2009.
    [2] Mirfenderesk H, Young I R. Direct measurements of the bottom friction factor beneath surface gravity waves[J]. Applied Ocean Research, 2003, 25(5): 269-287. doi: 10.1016/j.apor.2004.02.002
    [3] Huo G, Wang Y G, Yin B S, et al. A new measure for direct measurement of the bed shear stress of wave boundary layer in wave flume[J]. Journal of Hydrodynamics, Ser B, 2007, 19(4): 517-524. doi: 10.1016/S1001-6058(07)60148-6
    [4] Pujara N, Liu P L F. Direct measurements of local bed shear stress in the presence of pressure gradients[J]. Experiments in Fluids, 2014, 55(7): 1-13. doi: 10.1007/s00348-014-1767-8
    [5] Pujara N, Liu P L F, Yeh H. The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up[J]. Journal of Fluid Mechanics, 2015, 779: 556-597. doi: 10.1017/jfm.2015.435
    [6] Arnskov M M, Fredsøe J, Sumer B M. Bed shear stress measurements over a smooth bed in three-dimensional wave-current motion[J]. Coastal Engineering, 1993, 20(3): 277-316. https://www.researchgate.net/profile/Tom_Baldock/publication/229027786_Direct_Bed_Shear_Stress_Measurements_in_Laboratory_Swash/links/00b7d518d634c47f8d000000.pdf
    [7] Sumer B M, Arnskov M M, Christiansen N, et al. Two-com-ponent hot-film probe for measurements of wall shear stress[J]. Experiments in Fluids, 1993, 15(6): 380-384. doi: 10.1007/BF00191776
    [8] Jensen B L, Sumer B M, Fredsøe J. Turbulent oscillatory boundary layers at high Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 206: 265-297. doi: 10.1017/S0022112089002302
    [9] Carstensen S, Sumer B M, Fredsøe J. Coherent structures in wave boundary layers. part 1. oscillatory motion[J]. Journal of Fluid Mechanics, 2010, 646: 169-206. doi: 10.1017/S0022112009992825
    [10] Musumeci R E, Marletta V, Andò B, et al. Measurement of wave near-bed velocity and bottom shear stress by ferrofluids[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(5): 1224-1231. doi: 10.1109/TIM.2014.2359521
    [11] 梁婷, 夏云峰, 徐华, 等.波浪作用下床面切应力测量初探[J].水道港口, 2010, 31(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm

    Liang T, Xia Y F, Xu H, et al. Preliminary study of bed shear stress measurement under wave action[J]. Journal of Waterway and Harbor, 2010, 31(5):425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm
    [12] Xu H, Xia Y F, Ma B H, et al. Research on measurement of bed shear stress under wave-current interaction[J]. China Ocean Engineering, 2015, 29(4): 589-598. doi: 10.1007/s13344-015-0041-z
    [13] Boers M. Surf zone turbulence[D]. Netherlands: Delft University of Technology, 2005.
    [14] Deigaard R, Fredsøe J, Mikkelsen M B.Measurements of the bed shear stress in a surf zone[R]. Progress Report 73, Lyngby: Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 1991: 21-30. http://www.academia.edu/10624279/Beach_Stratigraphy
    [15] Yüksel Y, Çevik E Ö, Kapdanşli S. Bed shear stress distribution over beach profiles[J]. Journal of Coastal Research, 1998, 14(3): 1044-1053.
    [16] Sumer B M, Sen M B, Karagali I, et al. Flow and sediment transport induced by a plunging solitary wave[J]. Journal of Geophysical Research: Oceans, 2011, 116(C1): C01008. http://orbit.dtu.dk/files/5597782/2010JC006435.pdf
    [17] Sumer B M, Guner H, Hansen N M, et al. Laboratory observations of flow and sediment transport induced by plunging regular waves[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6161-6182. doi: 10.1002/2013JC009324
    [18] Schlichting H, Gersten K. Boundary-layer theory[M]. 9th ed. Berlin: Springer, 2016.
    [19] 马炳和, 王毅, 姜澄宇, 等.柔性热膜剪应力传感器水下测量温度修正[J].实验流体力学, 2014, 28(2): 39-44. doi: 10.11729/syltlx20140006

    Ma B H, Wang Y, Jiang C Y, et al. Temperature correction of flexible thermal shear stress sensor for underwater measurements[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):39-44. doi: 10.11729/syltlx20140006
    [20] Knight D W, Patel H S. Boundary shear in smooth rectangular ducts[J]. Journal of Hydraulic Engineering, 1985, 111(1): 29-47. doi: 10.1061/(ASCE)0733-9429(1985)111:1(29)
    [21] Koca K, Noss C, Anlanger C, et al. Performance of the Vectrino Profiler at the sediment-water interface[J]. Journal of Hydraulic Research, 2017: 1-9. (in press, doi: 10.1080/00221686.2016.1275049.)
    [22] Murai Y. Frictional drag reduction by bubble injection[J]. Experiments in Fluids, 2014, 55(7): 1773. doi: 10.1007/s00348-014-1773-x
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  140
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-06
  • 修回日期:  2017-05-22
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日