留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮动电容式剪应力微传感器结构设计解析模型

丁光辉 马炳和 邓进军 苑伟政

丁光辉, 马炳和, 邓进军, 等. 浮动电容式剪应力微传感器结构设计解析模型[J]. 实验流体力学, 2017, 31(3): 53-59. doi: 10.11729/syltlx20170004
引用本文: 丁光辉, 马炳和, 邓进军, 等. 浮动电容式剪应力微传感器结构设计解析模型[J]. 实验流体力学, 2017, 31(3): 53-59. doi: 10.11729/syltlx20170004
Ding Guanghui, Ma Binghe, Deng Jinjun, et al. Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 53-59. doi: 10.11729/syltlx20170004
Citation: Ding Guanghui, Ma Binghe, Deng Jinjun, et al. Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 53-59. doi: 10.11729/syltlx20170004

浮动电容式剪应力微传感器结构设计解析模型

doi: 10.11729/syltlx20170004
基金项目: 

国家重大科学仪器设备开发专项 2013YQ40911

详细信息
    作者简介:

    丁光辉(1990-), 男, 河南周口人, 博士研究生。研究方向:微纳集成设计与制造技术。通信地址:陕西省西安市碑林区友谊西路127号(710072)。E-mail:2015100434@mail.nwpu.edu.cn

    通讯作者:

    马炳和, E-mail:mabh@nwpu.edu.cn

  • 中图分类号: TH823

Analytical model for structure design of floating element wall shear stress micro-sensor with capacitive sensing

  • 摘要: 为提高设计水平和效率,建立了浮动电容式剪应力微传感器结构设计解析模型。该解析模型明晰了微传感器探头结构参数与传感器性能指标之间的关系。针对微传感器量程、固有频率、非线性度、灵敏度和分辨率等指标需求,能够更有针对性地快速得到优化传感器结构方案。结合设计案例,给出了微传感器探头结构的设计方法与流程,设计研制的传感器测试实验结果与解析模型的设计结果相符合。
  • 图  1  浮动电容式剪应力微传感器结构

    Figure  1.  Structure of the floating element wall shear stress sensor with capacitive sensing

    图  2  浮动电容式剪应力微传感器结构设计

    Figure  2.  Structure design forthe floating element wall shear stress sensor with capacitive sensing

    图  3  弹性梁结构特征尺寸

    Figure  3.  Dimension of folded tether

    图  4  浮动电容式剪应力微传感器梳齿结构排布方式

    Figure  4.  Comb fingers' arrangement of the floating element wall shear stress sensor with capacitive sensing

    图  5  浮动电容式剪应力微传感器检测电路

    Figure  5.  Detection circuit of the floating element wall shear stress sensor with capacitive sensing

    图  6  利用解析模型设计浮动电容式剪应力微传感器探头的流程

    Figure  6.  Design flow for the floating element wall shear stress sensor with capacitive sensing by the analytical model

    图  7  浮动电容式剪应力微传感器结构SEM照片(1/4视图)

    Figure  7.  SEM picture of the floating element wall shear stress sensor with capacitive sensing (a quarter view)

    图  8  MEMS壁面剪应力传感器静态标定装置

    Figure  8.  Static calibration apparatus for MEMS wall shear stress sensor

    图  9  浮动电容式剪应力微传感器静态标定曲线

    Figure  9.  Static calibration curve of the floating element wall shear stress sensor with capacitive sensing

    图  10  MEMS壁面剪应力传感器动态标定系统

    Figure  10.  Dynamic calibration system for MEMS wall shear stress sensor

    图  11  微传感器动态灵敏度与激励频率的关系

    Figure  11.  Relationship between dynamic sensitivity and excitation frequency of the sensor

    表  1  常用梳齿结构参数与最佳偏置比的关系

    Table  1.   Relationships between structural parameters and optimal bias-ratio of comb fingers

    表  2  微传感器探头结构参数设计结果

    Table  2.   Design results of the sensor structural parameters

  • [1] Johansson T G, Medhi F, Naughton J W. Some problems with near-wall measurements and the determination of wall shear stress[J]. AIAA Aerodyn Meas Technol Gr Test Conf, 2006, 2: 1179-1563478110. https://www.researchgate.net/publication/268560710_Some_Problems_with_Near-Wall_Measurements_and_the_Determination_of_Wall_Shear_Stress
    [2] 屠恒章, 李建强, 明晓, 等.基于MEMS传感器的高速风洞壁面剪切应力直接测量技术[J].实验流体力学, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml

    Tu H Z, Li J Q, Ming X, et al. Direct measurement technique of wall shear stress using MEMS sensors in a high-speed wind tunnel[J]. Journal of Experiemnts in Fluid Mechanics, 2008, 22(3): 94-98. http://www.syltlx.com/CN/abstract/abstract9657.shtml
    [3] Naughton J W, Sheplak M. Modern developments in shear stress measurement[J]. Prog Aerosp Sci, 2002, 38: 515-570. doi: 10.1016/S0376-0421(02)00031-3
    [4] Onsrud G, Persen L N, Saetran L R. On the measurement of wall shear stress[J]. Expt Fluids, 1987, 5: 11-16. doi: 10.1007/BF00272418
    [5] Ma B, Li Y, Wang L, et al. Modelling and calibration of microthermal sensor for underwater wall shear stress measurement[J]. Micro & amp; Nano Lett, 2014, 9(7): 486-489. https://www.researchgate.net/publication/275514855_Modelling_and_calibration_of_microthermal_sensor_for_underwater_wall_shear_stress_measurement
    [6] Chandrasekharan V, Sells J, Meloy J, et al. A microscale di-fferential capacitive direct wall-shear-stress sensor[J]. J Microelectromechanical Syst, 2011, 20(3): 622-635. doi: 10.1109/JMEMS.2011.2140356
    [7] Chandrasekharan V, Sells J, Arnold D P, et al. Characterization of a MEMS-based floating element shear stress sensor[J]. AIAA Aerosp Sci Meet, 2009: 1-11. https://www.researchgate.net/publication/269061763_Characterization_of_a_MEMS-Based_Floating_Element_Shear_Stress_Sensor
    [8] Lyu H, Jiang C, Xiang Z, et al. Design of a micro floating element shear stress sensor[J]. Flow Meas Instrum, 2013, 30: 66-74. doi: 10.1016/j.flowmeasinst.2012.11.004
    [9] Seo D, Kwon S, Bae N, et al. MEMS wall shear stress sensor for real time onboard monitoring of flow separation over a wing surface[C]. 51st AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2013: 1-8.
    [10] Ma B H, Ma C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsyst Technol, 2016, 22(2): 239-246. doi: 10.1007/s00542-015-2450-6
    [11] Sullivan D J, Kline J F, Salamon M. An optically interrogated, microfabricated pillar array for wall shear stress sensing[C]. 50th AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo, 2012: 1-12.
    [12] Chen T A, Mills D, Chandrasekharan V, et al. A miniaturized optical package for wall shear stress measurements in harsh environments[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2014, 6113: 91130G.
    [13] Ayaz U K, Ioppolo T, Ötügen V. High resolution micro-optical wall shear stress sensor[J]. AIAA Aerosp Sci Meet, 2011: 1-9. doi: 10.2514/6.2011-337
    [14] Schmidt A. Design and calibration of a microfabricated floating-element shear-stress sensor[J]. IEEE Trans Electron Devices, 1988, 35(6): 750-757. doi: 10.1109/16.2527
    [15] Pan T, Hyman D, Mehregany M, et al. Microfabricated shear stress sensors, Part 1: design and fabrication shear stress and its measurement[J]. AIAA J, 1999, 37(1): 66-72. doi: 10.2514/2.665
    [16] Zhao Z, Shin M, Gallman J M, et al. A microfabricated shear sensor array on a chip with pressure gradient calibration[J]. Sensors Actuators, A Phys, 2014, 205: 133-142. doi: 10.1016/j.sna.2013.11.002
    [17] Desai A V, Haque M A. Design and fabrication of a direction sensitive MEMS shear stress sensor with high spatial and temporal resolution[J]. J Micromechanics Microengineering, 2004, 14: 1718-1725. doi: 10.1088/0960-1317/14/12/017
    [18] Khankhua S, Ashraf M W, Tayyaba S, et al. Simulation of MEMS based Micro-Gyroscope using coventor ware[J]. Circuits Syst Adv Technol, 2011: 22-25. https://www.researchgate.net/publication/241185257_Simulation_of_MEMS_based_micro-gyroscope_using_CoventorWare
    [19] Anadkat N, Rangachar J S. Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics[J]. Int J Eng Res Technol. (IJERT), 2015, 4(4): 848-852. https://www.researchgate.net/publication/277359851_Simulation_based_Analysis_of_Capacitive_Pressure_Sensor_with_COMSOL_Multiphysics
    [20] 吕海峰, 姜澄宇, 邓进军, 等.用于壁面切应力测量的微传感器设计[J].机械工程学报, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm

    Lyu H F, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement[J]. Journal of Mechanical Engineering, 2010, 46(24): 54-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201024010.htm
    [21] Legtenberg R, Groeneveld A W, Elwenspoek M. Comb-drive actuators for large displacements[J]. J Micromechanics Microengineering, 1996, 6(3): 320-329. doi: 10.1088/0960-1317/6/3/004
    [22] Zhou G, Dowd P. Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators[J]. J Micromechanics Microengineering, 2002, 13(2): 178-183. http://stacks.iop.org/0960-1317/13/i=2/a=303?key=crossref.28388f42a3dd95119e4e480e5bfcad56
    [23] Sheplak M, Padmanabhan A, Schmidt M A, et al. Dynamic calibration of a shear-stress sensor using stokes-layer excitation[J]. AIAA J, 2001, 39(5): 819-823. doi: 10.2514/2.1415
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  122
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日