留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车隧道通过中的气动效应动模型实验研究

宋军浩 郭迪龙 杨国伟 杨乾锁

宋军浩, 郭迪龙, 杨国伟, 等. 高速列车隧道通过中的气动效应动模型实验研究[J]. 实验流体力学, 2017, 31(5): 39-45. doi: 10.11729/syltlx20170002
引用本文: 宋军浩, 郭迪龙, 杨国伟, 等. 高速列车隧道通过中的气动效应动模型实验研究[J]. 实验流体力学, 2017, 31(5): 39-45. doi: 10.11729/syltlx20170002
Song Junhao, Guo Dilong, Yang Guowei, et al. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39-45. doi: 10.11729/syltlx20170002
Citation: Song Junhao, Guo Dilong, Yang Guowei, et al. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39-45. doi: 10.11729/syltlx20170002

高速列车隧道通过中的气动效应动模型实验研究

doi: 10.11729/syltlx20170002
详细信息
    作者简介:

    宋军浩(1985-), 男, 山东威海人, 博士。研究方向:高速列车空气动力学。通信地址:北京市海淀区北四环西路15号(100190)。E-mail:sjunhao@163.com

    通讯作者:

    杨乾锁, E-mail: qsyang@imech.ac.cn

  • 中图分类号: O335

Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig

  • 摘要: 高速列车进入隧道时,会产生压缩波,压缩波沿隧道内传播至隧道端口后形成向外辐射的微气压波。本文介绍了采用动模型实验平台在200~350km/h速度范围内对60m双向隧道模型的隧道壁面压力波和出口微气压波开展的实验研究。首先分析了实验数据的有效性;其次给出了初始压缩波最大值随时间的衰减变化规律和微气压幅值随实验速度的变化特性;最后研究了流线形头型长度对微气压波幅值的影响。实验结果表明:在实验速度范围内,隧道压力波和出口微气压波无量纲值保持一致,但隧道出口微气压波与流线型头型长度只能定性描述,定量关系难以确定。
  • 图  1  隧道模型截面尺寸

    Figure  1.  Section dimension of the tunnel model

    图  2  2种列车模型的结构外形图及其相关尺寸

    Figure  2.  Streamline shape and dimension of two kinds of train models

    图  3  隧道模型安装在实验平台上的状态

    Figure  3.  Installation of the tunnel model on the moving model rig

    图  4  隧道模型、速度测量装置、内壁面压力波测量和微气压波测量的仪器的相对位置

    Figure  4.  Positions of the velocity measurement device, the sensors for the tunnel pressure wave and the micro pressure wave at the tunnel model

    图  5  (a) 距隧道入口20m处隧道截面不同位置的内壁面压力演化过程; (b)对应的马赫波传播图,这里模型的时速为304km/h

    Figure  5.  (a) Pressure evolution on the inner wall of the tunnel model at 20m from the entrance and (b) Mach wave propagation in the case of 304km/h

    图  6  4种速度下(a)隧道压力波的初始阶段和(b)无量纲处理的结果

    Figure  6.  (a) Initial stage of the compressed wave in the case of 4 speed values and (b) corresponding curves for the non-dimensional process

    图  7  4个位置的初始压缩波及其压力梯度随时间的演化:(a)304km/h和(b) 344km/h

    Figure  7.  Initial stage of the compressed waves and pressure gradients at 4 positions in the case of (a) 304km/h and (b) 344km/h

    图  8  不同速度下隧道压力波的最大值及无量纲化压力系数

    Figure  8.  Maxima of the compressed wave for several speeds

    图  9  距隧道模型出口2.5m处的微气压波演化曲线,这里列车模型速度为304km/hour

    Figure  9.  Evolution of the micro pressure wave at the position of 2.5m from the exit of the tunnel model in the case of 304km/h

    图  10  4种速度下模型A在隧道出口1和2.5m处的微气压波的峰值

    Figure  10.  Dependence of the peak values of the micro pressure waves atthe positions of 1m and 2.5m from the exit on the speed of train model

    图  11  在时速为304km/h运行时,2种模型的(a)隧道内的A21位置处的初始压力波波形和(b)隧道出口1m处对应车头进入隧道时的微气压波波形

    Figure  11.  Initial stage of the compressed wave at the position of A21 for two kinds of train models in the case of 304km/h and (b) the curves of the micro pressure wave at the position of 1m from the exit

  • [1] 杨国伟, 魏宇杰, 赵桂林, 等.高速列车的关键力学问题[J].力学进展, 2015, 45:201507. doi: 10.6052/1000-0992-14-002

    Yang G W, Wei Y J, Zhao G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45:201507. doi: 10.6052/1000-0992-14-002
    [2] Yoon T S, Lee S, Hwang J H, et al. Prediction and validation on the sonic boom by a high-speed train entering a tunnel[J]. Journal of Sound and Vibration, 2001, 247(2):195-211. doi: 10.1006/jsvi.2000.3482
    [3] Raghunathan R S, Kim H D, Setoguchi T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38:469-514. doi: 10.1016/S0376-0421(02)00029-5
    [4] 马伟斌, 张千里, 程爱君, 等.高速铁路隧道洞口微气压波影响因素与变化规律研究[J].铁道学报, 2013, (5):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201305017.htm

    Ma W B, Zhang Q L, Cheng A J, et al. Study on influence factors and changing law of micro-pressure waves at tunnel portals of high-speed railways[J]. Journal of the China Railway Society, 2013, (5):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201305017.htm
    [5] Howe M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[C]//Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1999, 213(2):89-104.
    [6] Auvity B, Bellenoue M, Kageyama T. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry[J]. Experiments in Fluids, 2001, 30(2):221-228. doi: 10.1007/s003480000159
    [7] 杨志刚, 谭晓明, 梁习锋, 等.高速列车过隧气压爆波的声学特征与传感器选型[J].中南大学学报(自然科学版), 2014, 45:1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201404043.htm

    Yang Z G, Tan X M, Liang X F, et al. Acoustical characteristics of micro-pressure wave and sensor selection[J]. Journal of Central South University Science and Technology, 2014, 45:1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201404043.htm
    [8] Johnson T, Dalley S. 1/25 scale moving model tests for the TRANSAERO Project[M]. Berlin Heidelberg:Springer, 2002.
    [9] Zhou D, Tian H, Zhang J, et al. Pressure transients induced by a high-speed train passing through a station[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135:1-9. doi: 10.1016/j.jweia.2014.09.006
    [10] Bellenoue M, Moriniere V, Kageyama T. Experimental 3-D simulation of the compression wave, due to train-tunnel entry[J]. Journal of Fluids and Structures, 2002, 16(5):581-595. doi: 10.1006/jfls.2002.0444
    [11] Ricco P, Baron A, Molteni P. Nature of pressure waves induced by a high-speed train travelling through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8):781-808. doi: 10.1016/j.jweia.2007.01.008
    [12] DoiT, Ogawa T, Masubuchi T, et al. Development of an experimental facility for measuring pressure waves generated by high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1):55-61. doi: 10.1016/j.jweia.2009.09.002
    [13] Yang Q S, Song J H, Li D, et al. Train model acceleration and deceleration[J]. Science China Technological Sciences, 2013, 56(3):642-647. doi: 10.1007/s11431-012-5101-5
    [14] Yang Q S, Song J H, Yang G W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152:50-58. doi: 10.1016/j.jweia.2016.03.002
    [15] 梅元贵, 周朝辉, 耿烽, 等.高速铁路隧道初始压缩波一维流动模型的数值分析方法[J].空气动力学学报, 2006, 24(4):508-512, 519. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604021.htm

    Mei Y G, Zhou C H, Geng F, et al. Numerical method of initial compression waves produced by a high-speed train entering a tunnel-hood based on one dimensional unsteady compressible flow model[J]. Acta Aerodynamica Sinica, 2006, 24(4):508-512, 519. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604021.htm
    [16] Takayama K, Sasoh A, Onodera O, et al. Experimental investigation on tunnel sonic boom[J]. Shock Waves, 1995, 5(3):127-138. doi: 10.1007/BF01435520
    [17] Ozawa S, Maeda T, Matsumura T, et al. Countermeasures to reduce micro-pressure waves radiating from exits of Shinkansen tunnels[C]//Proceedings of the Seventh International Conference on the Aerodynamics and Ventilation of Vehicle Tunnels, Brighton, UK, 1991:253-266.
  • 加载中
图(11)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-08-24
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日