Design and development of MEMS based beam-membrane structure flow sensor
-
摘要: 流量是工业检测重要参数之一。流量检测技术随着微机械电子系统(MEMS)技术的发展与应用,向着小型化、高精度、智能化的方向发展。基于MEMS技术设计了一种梁膜结合的压差式流量传感器结构,分析了其基本工作原理,采用硅微加工工艺对传感器进行了流片加工,然后对封装完成的传感器样机进行了气流和水流静态性能测试。气流测试灵敏度为0.3508mV/(ms-1)2,测试基本精度为0.5885%FS;水流测试灵敏度为41.5241mV/(ms-1)2,测试基本精度为0.9323%FS。结果表明,所设计传感器具有较高的灵敏度与基本精度,从而能完成流量信号的检测。Abstract: Flow is one of the important parameters in industrial detection. With the development and application of the Micro Electro-Mechanical Systems (MEMS) technology, flow detection is developing towards miniaturization, high precision and intelligence. A MEMS beam-membrane structure based differential pressure flow sensor is designed, and its working principle is analyzed. The sensor is fabricated by the silicon micromachining technology, and then the airflow test and water flow test are conducted. The sensitivity by the airflow test is 0.3508mV/(ms-1)2 and the basic accuracy is 0.5885%FS. The sensitivity by the water flow test is 41.5241mV/(ms-1)2 and the basic accuracy is 0.9323%FS. The results show that the designed sensor has sufficient sensitivity and basic accuracy for the flow measurement.
-
Key words:
- MEMS /
- flow /
- sensor /
- beam-membrane structure /
- micromachining
-
表 1 传感器标定测试结果
Table 1. Result of calibration test
Air flow test Water flow test Environment air water Temperature/℃ 20 10 Supply voltage/V ±5 ±5 ZERO voltage/mV 52.5 51.28 Range/(m·s-1) 1.2~30 0.11~3 Sensitivity/(mV·(ms-1)-2) 0.3508 41.5241 Nonlinearity/%FS 0.0915 0.2094 Hysteresis/%FS 0.2536 0.2081 Repeatability/%FS 0.5231 0.8843 Basic accuracy/%FS 0.5885 0.9323 -
[1] Schena E, Massaroni C, Saccomandi P, et al. Flow measurement in mechanical ventilation:a review[J]. Medical Engineering & Physics, 2015, 37(3):257-264. http://www.academia.edu/13717799/Flow_measurement_in_mechanical_ventilation_A_review [2] 蔡武昌.从FLOMEKO 2010看流量测量技术和仪表的发展[J].石油化工自动化, 2011, (05):1-4. doi: 10.3969/j.issn.1007-7324.2011.05.001Cai W C. View of flow measurement technology and instrument development from FLOMEKO 2010[J]. Automation in Petro-chemical Industry, 2011, (05):1-4. doi: 10.3969/j.issn.1007-7324.2011.05.001 [3] Worsfold P J, Clough R, Lohan M C, et al. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements-a review[J]. Analytica Chimica Acta, 2013, 803:15-40. doi: 10.1016/j.aca.2013.06.015 [4] Nguyen N T. Micromachined flow sensors-a review[J]. Flow Measurement and Instrumentation, 1997, 8(1):7-16. doi: 10.1016/S0955-5986(97)00019-8 [5] Zhou L X. A review of measurements and numerical studies for the effect of wall roughness on the gas-particle flow behavior[C]. 8th International Symposium on Measurement Techniques for Multiphase Flows, 2014:115-120. [6] 彭杰纲, 周兆英, 叶雄英.基于MEMS技术的微型流量传感器的研究进展[J].力学进展, 2005, (03):361-376. doi: 10.3321/j.issn:1000-0992.2005.03.007Peng J G, Zhou Z Y, Ye X Y. Progresses on micromachined flow sensors based on mems technology[J]. Advances in Mechanics, 2005, (03):361-376. doi: 10.3321/j.issn:1000-0992.2005.03.007 [7] Kuo J T W, Yu L, Meng E. Micromachined thermal flow sensors-a review[J]. Micromachines, 2012, 3(3):550-573. http://www.oalib.com/paper/159573 [8] Nawi M N M, Abd M A, Arshad M R, et al. Review of MEMS flow sensors based on artificial hair cell sensor[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2011, 17(9):1417-1426. doi: 10.1007/s00542-011-1330-y [9] Ozaki Y, Ohyama T, Yasuda T, et al. Air flow sensor modeled on wind receptor hairs of insects[J]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000:531-536. http://www.oalib.com/references/9041807 [10] Ma R H, Chou P C, Wang Y H, et al. A microcantilever-based gas flow sensor for flow rate and direction detection[J]. Micro-system Technologies Micro and Nano systems Information Storage and Processing Systems, 2009, 15(8):1201-1205. http://www.oalib.com/paper/4086488 [11] Richter M, Wackerle M, Woias P, et al. A novel flow sensor with high time resolution based on differential pressure principle[C]. MEMS 99:Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, New York, 1999:118-123. [12] Chen P, Zhao Y L, Tian B A, et al. Design and fluid-structure interaction analysis of a micromachined cantilever-based differential pressure flow sensor[J]. Micro & Nano Letters, 2014, 9(10):650-654. [13] Chen P, Zhao Y L, Li Y Y. Design, simulation and fabrication of a micromachined cantilever-based flow sensor[C]. 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013:681-684. [14] Fitzpatrick JAJ, Inouye Y, Manley S, et al. From "there's plenty of room at the bottom" to seeing what is actually there[J]. Chemphyschem, 2014, 15(4):547-549. doi: 10.1002/cphc.201400097 [15] Stylios G K. There is plenty of room at the bottom, RP Feynman[J]. International Journal of Clothing Science and Technology, 2013, 25(5):336-337. http://www.nanoparticles.org/pdf/Feynman.pdf [16] SD S. MEMS materials and processes handbook[M]. New York:Springer, 2011. [17] Erdmann A, Liang R G, Sezginer A, et al. Advances in lithography:introduction to the feature[J]. Applied Optics, 2014, 53(34):L1-L2. [18] Mendaros R G, Marcelo M T. ICP-RIE platinum (Pt) sputter etching[C]. 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2014:114-117. -