留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速边界层感受性研究综述

江贤洋 李存标

江贤洋, 李存标. 高超声速边界层感受性研究综述[J]. 实验流体力学, 2017, 31(2): 1-11. doi: 10.11729/syltlx20160129
引用本文: 江贤洋, 李存标. 高超声速边界层感受性研究综述[J]. 实验流体力学, 2017, 31(2): 1-11. doi: 10.11729/syltlx20160129
Jiang Xianyang, Li Cunbiao. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11. doi: 10.11729/syltlx20160129
Citation: Jiang Xianyang, Li Cunbiao. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11. doi: 10.11729/syltlx20160129

高超声速边界层感受性研究综述

doi: 10.11729/syltlx20160129
基金项目: 

国家自然科学基金资助项目“高超声速边界层控制转捩研究” 11632002

“可压缩湍流的机理、模式及实验研究” 11521091

“壁面温度对高超声速边界层转捩影响的实验研究” 11602005

详细信息
    作者简介:

    江贤洋 (1989-), 男, 福建三明人, 博士研究生。研究方向:实验流体力学。通信地址:北京市海淀区北京大学工学院 (100871)。E-mail:xyjmh@pku.edu.cn

    通讯作者:

    李存标, E-mail: cblee@mech.pku.edu.cn

  • 中图分类号: O354.4

Review of research on the receptivity of hypersonic boundary layer

  • 摘要: 高超声速边界层感受性是边界层转捩预测与控制的关键环节,其对高超声速飞行器研究至关重要。目前关于高超声速边界层感受性的实验研究仍然十分匮乏,为了更好地理解高超声速边界层感受性过程并指导该领域的实验研究,文章梳理了近20年来国际上高超声速边界层感受性问题的研究内容,包括对自由流扰动和壁面扰动的感受性,并主要介绍了Fedorov的前缘感受性理论和模态转化机制。最后总结了自由流扰动中感受性的不同发展路径。
  • 图  1  高超声速边界层自由流扰动感受性动示意图[22]

    Figure  1.  A schematic of the wave field in a hypersonic flow induced by free-stream disturbance[22]

    图  2  边界层内不同模态波和RF的关系[40]

    Figure  2.  The distribution of the phase velocities of boundary-layer wave modes as a function of RF obtained by the LST[40]

    图  3  二维扰动的相速度和增长率随雷诺数变化

    Figure  3.  Phase speed of two-dimensional disturbances as a function of Reynolds number[38]

    图  4  入射角与耦合系数关系[38]

    Figure  4.  Coupling coefficient |C0| vs. incident angle[38]

    图  5  声波感受性示意图

    Figure  5.  Physical picture of receptivity to acoustic waves[38]

    图  6  感受性系数的理论和实验对比[38]

    Figure  6.  Receptivity coefficient comparison of theory and experiment[38]

    图  7  不同迎角和频率对不同模态的感受性系数影响[26]

    Figure  7.  Response coefficients for cases of different frequencies and different incident wave angles[26]

    图  8  壁面冷却对转捩的影响[49]

    Figure  8.  Experimental effect of wall cooling on transition[49]

    图  9  不同壁面温度条件下压力脉动的对比[26]

    Figure  9.  Pressure perturbation along the wall surface induced by free-stream fast acoustic waves of zero incident wave angle and different temperature boundary conditions (F=2.2×10-4)[26]

    图  10  温斑影响下的快模态流向速度沿y轴分布[61]

    Figure  10.  A map of the streamwise velocity component of mode F generated by the α component of the temperature spot localized at a distance y0 from the wall, M =5.6, R = 1219.5, stagnation temperature T0= 470 K, Tw*=Tad*[61]

    图  11  高超声速边界层不稳定波激发的路径

    Figure  11.  Possible roadmap to unstable mode in hypersonic boundary layer (IR-ineraction)

    表  1  壁面温度对感受性及转捩的影响

    Table  1.   Effect of wall condition on transiton and receptiviy

    研究者 模型 Ma 方法 壁面条件 结论
    Fedrov et al.2003 平板 6 理论 绝热 感受性:慢声波/快声波≈50
    冷壁 快模态可能失稳
    Ma & Zhong2001 平板 4.5 计算
    DNS
    绝热 等温比
    绝热对声波的感受性小
    等温
    Balakumar2015 楔形圆锥 6 计算 绝热 感受性:慢声波/快声波≈20
    冷却 冷却 (尖锥):转捩提前
    Kara et al.2007,2008 楔形直锥 6 计算 绝热 感受性:慢声波/快声波≈67
    冷却 冷却时转捩提前
    Blanchard 1995 裙锥 6 实验 绝热/冷却 冷却时转捩提前
    Demetriades 1978 直锥 8 实验 Tw: 0.41~0.8 冷却时转捩提前
    Lysenko & Maslov 1984 平板 2/4/6 实验 Tw: 0.3~1 冷却对声波没影响Mack第一模态稳定第二模态失稳
    Stetson et al. 1989 直锥 8 实验 Tw=0.42 冷却时转捩提前Mack第二模态频率变高,增长率变大
    Polivanov2011 平板 5.4 理论计算 冷却加热 冷却时转捩提前冷却位置影响转捩
    Sidorenko et al. 2015 直锥 6 实验计算 局部冷却 抑制第二模态转捩延迟
    局部加热 与局部冷却结果相反
    Soudakov et al.2009 平板 6 计算DNS 温度跳跃 温度跳跃影响感受性
    Sanator et al. 1965 尖锥 8.8 实验 Tw: 0.08~0.4 没有明显影响
    注:Tw指壁面温度/绝热温度
    下载: 导出CSV
  • [1] Schmid P J, Henningson D S. Stability and transition in shear flows[M]. New York:Springer-Verlag, 2001.
    [2] Morkovin M V. Bypass transition to turbulence and research desiderata[R]. NASA Lewis Research Center Transition in Turbines, 1985.
    [3] Durbin P, Wu X. Transition beneath vortical disturbances[J]. Annual Review of Fluid Mechanics, 2007, 39(1):107-128. doi: 10.1146/annurev.fluid.39.050905.110135
    [4] Kachanov Y S. Physical mechanisms of laminar-boundary-layer transition[J]. Annual Review of Fluid Mechanics, 1994, 26(1):411-482. doi: 10.1146/annurev.fl.26.010194.002211
    [5] Lee C B, Wu J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802. doi: 10.1115/1.2909605
    [6] Mack L M. Boundary-layer stability theory[R]. AGRAD-R-709, 1984.
    [7] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅴ-tests with a cooled model[R]. AIAA-89-1895, 1989.
    [8] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅰ-Sharp cone[C]. 16th Fluid and Plasmadynamics Conference, Massachusetts, 1983.
    [9] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅱ-Blunt cone[C]. 22nd Aerospace Sciences Meeting, 1984.
    [10] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅲ-Sharp cone at angle of attack[C]. 23rd Aerospace Sciences Meeting, 1985.
    [11] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅳ-On unit Reynolds number and environmental effects[C]. 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference, 1986.
    [12] Bountin D, Sidorenko A, Shiplyuk A. Development of natural disturbances in a hypersonic boundary layer on a sharp cone[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(1):57-62. doi: 10.1023/A:1018852410488
    [13] Dong M, Luo J S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(8):1019-1028. doi: 10.1007/s10483-007-0804-2
    [14] Pruett C D, Chang C L. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(1):49-67. doi: 10.1007/s001620050080
    [15] Fezer A, Kloker M. Spatial direct numerical simulation of transition phenomena in supersonic flat-plate boundary layers[M]. Springer Berlin Heidelberg, 2000.
    [16] Reshotko E. Boundary-layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8(1):311-349.
    [17] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
    [18] Fedorov A V, Khokhlov A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4):231-254. doi: 10.1007/s001620100052
    [19] Westin K J A, Bakchinov A A, Kozlov V V, et al. Experiments on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized free stream disturbance[J]. European Journal of Mechanics B-Fluids, 1998, 17(6):823-846. doi: 10.1016/S0997-7546(99)80016-8
    [20] Borodulin V I, Ivanov A V, Kachanov Y S, et al. Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness[J]. Journal of Fluid Mechanics, 2013, 716:487-527. doi: 10.1017/jfm.2012.555
    [21] Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34:291-319.
    [22] Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. doi: 10.1146/annurev-fluid-120710-101208
    [23] Fedorov A V. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. doi: 10.1146/annurev-fluid-122109-160750
    [24] Balakumar P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited)[C]. 45th AIAA Fluid Dynamics Conference, 2015.
    [25] McKenzie J F, Westphal K O. Interaction of linear waves with oblique shock waves[J]. Physics of Fluids, 1968, 11(11):2350-2362. doi: 10.1063/1.1691825
    [26] Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound[J]. Journal of Fluid Mechanics, 2003, 488:79-121. doi: 10.1017/S0022112003004798
    [27] Fedorov A V, Khokhlov A P. Excitation of unstable modes in a supersonic boundary layer by acoustic waves[J]. Fluid Dyna-mics, 1991, 26(4):531-537.
    [28] Fedorov A V, Khokhlov A P. Excitation and evolution of unstable disturbances in supersonic boundary layer[C]. Proceedings of ASME Fluid Engineering Conference, 1993, 151:1-13.
    [29] Fedorov A V, Tumin A. Initial value problem for hypersonic boundary layer flows[C]. 15th AIAA Computational Fluid Dynamics Conference, 2001.
    [30] Herbert T, Lin N A Y. Studies of boundary-layer receptivity with parabolized stability equations[C]. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993.
    [31] Maslov A A, Shiplyuk A N, Sidorenko A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94. doi: 10.1017/S0022112000002147
    [32] Schneider S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft & Rockets, 2008, 45(45):641-664.
    [33] 张传鸿. 高超声速静风洞的调试及圆锥边界层转捩的实验研究[D]. 北京: 北京大学, 2014.

    Zhang C H. The development of hypersonic quiet wind tunnel and experimental investigation of hypersonic boundary-layer transition on a flared cone[D]. Beijing:Peking University, 2014.
    [34] Zhang C, Lee C. Rayleigh-scattering visualization of the deve-lopment of second-mode waves[J]. Journal of Visualization, 2016:1-6.
    [35] Fedorov A V, Khokhlov A P. Sensitivity of a supersonic boundary layer to acoustic disturbances[J]. Fluid Dynamics, 1992, 27(1):29-34. doi: 10.1007/BF01054169
    [36] Fedorov A V, Khokhlov A P, Khokhlov P. Prehistory of instability in a hypersonic boundary layer[J]. Theoretical and Computational Fluid Dynamics, 2001, 14(6):359-375. doi: 10.1007/s001620100038
    [37] Ma Y B, Zhong X L. Numerical simulation of receptivity and stability of nonequilibrium reacting hypersonic boundary layers[C]. 39th Aerospace Sciences Meeting and Exhibit, 2001.
    [38] Fedorov A V. Receptivity of a high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491:101-129. doi: 10.1017/S0022112003005263
    [39] Fedorov A V, Tumin A. Initial-value problem for hypersonic boundary-layer flows[J]. AIAA Journal, 2003, 41(3):379-389. doi: 10.2514/2.1988
    [40] Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 1:Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488:31-78. doi: 10.1017/S0022112003004786
    [41] 周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.

    Zhou H, Su C H, Zhang Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layers[M]. Beijing:Science Press, 2015.
    [42] Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics, 2005, 532:63-109. doi: 10.1017/S0022112005003836
    [43] Gao J, Luo J S, Wu X S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Acta Mechanica Sinica, 2015, 31(6):899-909. doi: 10.1007/s10409-015-0504-8
    [44] 张玉东, 傅德薰, 马延文, 等.钝锥高超声速边界层来流感受性数值研究[J].中国科学, 2008, 38(9):1246-1254. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200809016.htm

    Zhang Y D, Fu D X, Ma Y W, et al. Receptivity to free-stream disturbance waves for hypersonic flow over a blunt cone[J]. Science in China, Series G:Physics, Mechanics and Astronomy, 2008, 38(9):1246-1254. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200809016.htm
    [45] Shi J, Tang X, Wang Z, et al. Receptivity of boundary layer over a blunt wedge due to freestream pulse disturbances at Mach 6[J]. International Journal of Aerospace Engineering, 2016, (1):1-14.
    [46] Kara K, Balakumar P, Kandil O. Receptivity of hypersonic boundary layers due to acoustic disturbances over blunt cone[C]. AIAA Aerospace Sciences Meeting and Exhibit, 2007.
    [47] Balakumar P, Kegerise M A. Receptivity of hypersonic boundary layers over straight and flared cones[J]. AIAA Journal, 2015, 53(8):2097-2109. doi: 10.2514/1.J053432
    [48] Zhong X L, Lei J. Numerical simulation of nose bluntness effects on hypersonic boundary layer receptivity to freestream disturbances[R]. AIAA-2011-30379.
    [49] Potter J L. Review of the influence of cooled walls on boundary-layer transition[J]. AIAA Journal, 1980, 18(8):1010-1012. doi: 10.2514/3.7703
    [50] Stetson K F, Kimmel R L. Surface temperature effects on boundary-layer transition[J]. AIAA Journal, 1992, 30(11):2782-2783. doi: 10.2514/3.11300
    [51] Kara K, Balakumar P, Kandil O. Effects of wall cooling on hypersonic boundary layer receptivity over a cone[C]. 38th Fluid Dynamics Conference and Exhibit, 2008.
    [52] Blanchard A E. Investigation of wall-cooling effects on hypersonic boundary-layer stability in a quiet wind tunnel[D]. Norfolk, VA:Old Dominion University, 1995.
    [53] Demetriades A. New experiments on hypersonic boundary layer stability including wall temperature effects[C]//Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute, 1978:39-54.
    [54] Decarlo J P, Sanator R J, Torrillo D T. Hypersonic boundary-layer transition data for a cold-wall slender cone[J]. AIAA Journal, 1965, 3(4):758-760. doi: 10.2514/3.2969
    [55] Lysenko V I, Maslov A A. The effect of cooling on supersonic boundary-layer stability[J]. Journal of Fluid Mechanics, 1984, 147:39-52. doi: 10.1017/S002211208400197X
    [56] Sidorenko A, Gromyko Y, Bountin D, et al. Effect of the local wall cooling/heating on the hypersonic boundary layer stability and transition[J]. EUCASS Proceedings Series-Advances in AeroSpace Sciences, 2015, 7:549-568.
    [57] Polivanov B P, Gromyko Y, Sidorenko A, et al. Effects of local wall heating and cooling on hypersonic boundary-layer stability[C]. Proceedings of the Summer Program 2011, 2011.
    [58] Soudakov V, Egorov I, Fedorov A. Numerical simulation of receptivity of a hypersonic boundary layer over a surface with temperature jump[C]. ESA Special Publication, 2009, 659.
    [59] Fedorov A V, Ryzhov A A, Soudakov V G, et al. Receptivity of a high-speed boundary layer to temperature spottiness[J]. Journal of Fluid Mechanics, 2013, 722:533-553. doi: 10.1017/jfm.2013.111
    [60] Egorov I V, Sudakov V G, Fedorov A V. Numerical modeling of the stabilization of a supersonic flat-plate boundary layer by a porous coating[J]. Fluid Dynamics, 2006, 41(3):356-365. doi: 10.1007/s10697-006-0051-x
    [61] Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. doi: 10.1146/annurev-fluid-122109-160750
    [62] Schmisseur J D, Schneider S P, Collicott S H. Supersonic boundary-layer response to optically generated freestream disturbances[J]. Experiments in Fluids, 2002, 33(2):225-232. doi: 10.1007/s00348-001-0392-5
    [63] Kosinov A D, Maslov A A, Shevelkov S G. Experiments on the stability of supersonic laminar boundary-layers[J]. Journal of Fluid Mechanics, 1990, 219:621-633. doi: 10.1017/S0022112090003111
    [64] Fedorov A V, Ryzhov A A, Soudakov V G, et al. Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability[J]. Computers & Fluids, 2014, 100:130-137. https://www.research.manchester.ac.uk/portal/en/publications/numerical-simulation-of-the-effect-of-local-volume-energy-supply-on-highspeed-boundary-layer-stability(df644230-a44b-4476-80bc-8f5268bcd348).html
    [65] Kuester M S, White E B. Roughness receptivity and shielding in a flat plate boundary layer[J]. Journal of Fluid Mechanics, 2015, 777:430-460. doi: 10.1017/jfm.2015.267
    [66] Balakumar P. Boundary layer receptivity due to roughness and freestream sound for supersonic flows over axisymmetric cones[C]. 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, 2008.
    [67] Iyer P S, Muppidi S, Mahesh K. Roughness-induced transition in high speed flows[C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011.
    [68] Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2):161-167. doi: 10.2514/2.3803
    [69] Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. doi: 10.2514/1.29713
    [70] Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1090-1105. doi: 10.2514/1.37431
    [71] Wang X, Zhong X. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. doi: 10.2514/1.37766
    [72] Mistry V I, Page G J, McGuirk J J. Simulation of receptivity and induced transition from discrete roughness elements[J]. Flow, Turbulence and Combustion, 2015, 95(2):301-334. https://www.researchgate.net/profile/James_Mcguirk/publication/283166050_Simulation_of_Receptivity_and_Induced_Transition_From_Discrete_Roughness_Elements/links/563895db08ae51ccb3cc5a62.pdf
    [73] Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6):064105. doi: 10.1063/1.4922389
    [74] Egorov I V, Fedorov A V, Soudakov V G. Receptivity of a hypersonic boundary layer over a flat plate with a porous coating[J]. Journal of Fluid Mechanics, 2008, 601:165-187.
    [75] Duan L, Wang X W, Zhong X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Phy-sics, 2010, 229(19):7207-7237. doi: 10.1016/j.jcp.2010.06.008
    [76] Fong K D, Wang X W, Huang Y T, et al. Second mode suppression in hypersonic boundary layer by roughness:design and experiments[J]. AIAA Journal, 2015, 53(10):3138-3143. doi: 10.2514/1.J054100
    [77] Balakumar P. Receptivity of hypersonic boundary layers to distributed roughness and acoustic disturbances[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
    [78] Wang X W, Zhong X L. Effect of wall perturbations on the receptivity of a hypersonic boundary layer[J]. Physics of Fluids, 2009, 21(4):044101. doi: 10.1063/1.3103880
    [79] Ladd D M, Hendricks E W. The effect of background particulates on the delayed transition of a heated 9-1 ellipsoid[J]. Experiments in Fluids, 1985, 3(2):113-119. doi: 10.1007/BF00276718
    [80] Lauchle G C, Petrie H L, Stinebring D R. Laminar-flow performance of a heated body in particle-laden water[J]. Experiments in Fluids, 1995, 19(5):305-312. doi: 10.1007/BF00203414
    [81] Holden M S. Studies of transitional flow, unsteady separation phenomena and particle induced augmentation heating on ablated nose tips[R]. AFOSR-TR-76-1066, 1975.
    [82] Fedorov A V, Tumin A. High-speed boundary-layer instability:old terminology and a new framework[J]. AIAA Journal, 2011, 49(8):1647-1657. doi: 10.2514/1.J050835
    [83] Van Ingen J L. The eN method for transition prediction:historical review of work at TU delft[C]. 38th Fluid Dynamics Conference and Exhibit, 2008.
    [84] Lau K Y. Hypersonic boundary-layer transition:application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2):176-183. doi: 10.2514/1.31134
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  47
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-02
  • 修回日期:  2016-10-26
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日