Effect of confining pressure on the axial impact pressure of hydraulic jetting
-
摘要: 高压水射流在油气资源钻探与增产领域应用日益广泛。但在井下作业时,射流一般处在很高的围压环境中,围压究竟对射流结构和能量传递有何影响是长期困扰着钻井领域的重要问题之一。通过围压水射流冲击压力测试装置,测得了不同围压条件下轴线冲击压力及射流压力。研究发现:憋压加载围压条件下,当围压小于喷嘴流量系数平方倍射流压力时,射流压力基本不变;围压较大时,射流压力随围压线性增加;围压对1倍喷距内的高压射流冲击压力基本没有影响;无因次射流轴向水力静压与无因次围压的3.3次方成正比,随无因次喷距线性增加,但当无因次围压超过阀值(0.6~0.7),水力静压将随围压线性增加;无因次轴线冲击压力与无因次围压的0.15次方成反比,而随无因次喷距线性减小,但超过阀值后基本不变。本研究可为钻井水力参数设计、冲砂洗井等井下作业提供一定参考。Abstract: Hydraulic jetting techniques have found growing application in improving the rate of penetration (ROP) and enhancing oil recovery (EOR) in the oil and gas field. But it always encounters high confining pressure condition which may significantly weaken the performance of hydraulic jetting at the bottom of wells especially for the deep and ultra-deep wells, so it is crucially important to study the effect of the confining pressure on the high pressure jetting. A hydraulic jetting impact pressure measuring device which could generate low confining pressure ( < 10MPa) is used to measure the jet pressure and axial impact pressure. Results show that, with the method to build the confining pressure by changing the diameter of the outlet, the dimensionless jet pressure hardly changes until the dimensionless confining pressure exceeds a threshold which approximately equals to the square of the nozzle discharge coefficient, and from then on it increases with the confining pressure linearly; the confining pressure has no effect on the axial impact pressure within one nozzle diameter standoff distance; numerical fitting analysis show that the dimensionless axial hydrostatic pressure is proportional to the 3.3 power of the dimensionless confining pressure, and increases linearly with the dimensionless standoff distance; the dimensionless axial impact pressure is inversely proportional to the 0.15 power of the dimensionless confining pressure, and decreases linearly with the dimensionless standoff distance; but if the dimensionless confining pressure exceeds a threshold value which is between 0.6 and 0.7 in our study, the axial hydraulic static pressure will be in accord with the confining pressure, and the axial impact pressure won't change. This study provides helpful instruction for the hydraulic factor design for drilling, sand-flushing operation, et al.
-
Key words:
- hydraulic jetting /
- confining pressure /
- impact pressure /
- hydrostatic pressure
-
表 1 围压对高压射流冲击压力影响实验参数设置
Table 1. Setup of the experiment for the effect of ambient pressure on hydraulic jet
No. Flow rate/(L·s-1) Standoff distance/mm Ambient pressure/MPa 1 0.62 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7 2 0.67 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7 3 0.77 3, 6, 9, 12, 15, 18, 21 0, 1, 2, 3, 4, 5, 6, 7 -
[1] Maurer W C, Heilhecker J K. Hydraulic jet drilling[C]. Drilling and Rock Mechanics Symposium, Austin, Texas, 1969. SPE-2434-MS. doi:http://dx.doi.org/10.2118/2434-MS. [2] Song X, Li G, Huang Z, et al. Mechanism and characteristics of horizontal-wellbore cleanout by annular helical flow[J]. SPE J, 2014, 19(01):45-54. doi:http://dx.doi.org/10.2118/156335-PA. [3] 曲海, 李根生, 黄中伟, 等.水力喷射分段压裂密封机理[J].石油学报, 2011, (03):514-517. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103024.htmQu H, Li G S, Huang Z W, et al. Sealing mechanism of the hydrajet stepwise fracturing[J]. Acta Petrolei Sinica, 2011, (03):514-517. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103024.htm [4] 李根生, 史怀忠, 沈忠厚, 等.水力脉冲空化射流钻井机理与试验[J].石油勘探与开发, 2008, (02):239-243. doi: 10.3321/j.issn:1000-0747.2008.02.018Li G S, Shi H Z, Shen Z H, et al. Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development, 2008, (02):239-243. doi: 10.3321/j.issn:1000-0747.2008.02.018 Feenstra R, Van Leeuwen J J M. Full-scale experiments on jets in impermeable rock drilling[J]. Journal of Petroleum Techno-logy, 1964, 16(03):329-336. SPE-694-PA. doi:http://dx.doi.org/10.2118/694-PA. [6] Kolle J J, Otta R, Stang D L. Laboratory and field testing of an ultra-high-pressure, jet-assisted drilling system[C]. SPE/IADC Drilling Conference, Amsterdam, Netherlands, 1991. SPE-22000-MS. doi:http://dx.doi.org/10.2118/22000-MS. [7] Khorshidian H, Butt S D, Arvani F. Influence of high velocity jet on drilling performance of PDC bit under pressurized condition[C]. American Rock Mechanics Association Source 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 2014. ARMA-2014-7465. [8] Albertson M L, Dai Y B, Jensen R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1):639-664. [9] McLean R H. Crossflow and impact under jet bits[J]. Journal of Petroleum Technology, 1964, 16(11):1299-1306. SPE-889-PA. doi:http://dx.doi.org/10.2118/889-PA. [10] Shen Z, Sun Q. Study of pressure attenuation of a submerged, nonfree jet and a method of calculation for bottomhole hydraulic parameters[J]. SPE Drilling Engineering, 1988, 3(01):69-76. SPE-14869-PA. doi:http://dx.doi.org/10.2118/14869-PA. [11] Feenstra R, Van Steveninck J. Rock cutting by jets:a promising method of oil well drilling[J]. Society of Petroleum Engineers, 1974. SPE-4923-MS. [12] Alberts D G, Hashish M. Evaluation of submerged high-pressure waterjets for deep ocean applications[C]. The Sixth International Offshore and Polar Engineering Conference, Los Angeles, California, USA, 1996. ISOPE-I-96-006. [13] Surjaatmadja J B, Bailey A J, Sierra S A. Hydrajet testing under deep-well conditions points to new requirements for hard-rock perforating[J]. SPE Drilling & Completion, 2010, 25(03):372-379. SPE-122817-PA. doi:http://dx.doi.org/10.2118/122817-PA. [14] Liao H, Li G, Yi C, et al. Experimental study on the effects of hydraulic confining pressure on impacting characteristics of jets[J]. Atomization and Sprays, 2012, 22(3):227-238. doi: 10.1615/AtomizSpr.v22.i3 [15] Khorshidian H, Butt S D, Arvani F. Influence of high velocity jet on drilling performance of PDC bit under pressurized condition[C]. American Rock Mechanics Association Source 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 2014. ARMA-2014-7465. [16] 袁恩熙.工程流体力学[M].北京:石油工业出版社, 1986:77-78.Yuan E X. Engineering fluid mechanics[M]. Beijing:Petroleum Industry Press, 1986:77-78. [17] 沈忠厚.水射流理论与技术[M].东营:石油大学出版社, 1998:51-52.Shen Z H. Hydraulic jet theory and technology[M]. Dong-ying:University of Petroleum Press, 1998:51-52. -