Experimental study on the control of fixed floor boundary layer in low speed wind tunnel
-
摘要: 在飞机起降和车辆的风洞试验中,通常采用固定地板来模拟地面,但固定地板附面层的存在对试验数据产生了不可忽略的影响。因此,需要采取一定措施控制地板表面上的附面层影响。采用附面层吸除方法对于中国空气动力研究与发展中心8m×6m低速风洞的大面积地板来说效果较好、可行性高。研制了含有可单独控制的48个吸气单元共192个吸气孔的地板,集成了以水环真空泵组为基础的真空吸气和控制系统。在70m/s的风速下,通过试验获得了10种地板分布式吸气控制方案对地板附面层厚度的影响规律,得到了将附面层厚度控制在30mm的最佳吸气控制方案。在最佳控制方案下,测量得到风洞流场气流偏角为-0.14°,验证了附面层厚度不受地板在风洞中安装高度的影响。最后,采用C919飞机模型完成了吸气地板和不吸气地板的对比试验,得出在迎角8°以上,吸气地板使C919飞机试验获得的升力系数减小,阻力系数增加,俯仰力矩增加。Abstract: In the wind tunnel test of aircraft-taking-and-landing and vehicles, the fixed floor is used to simulate the ground. The existence of the fixed floor boundary layer has an influence on the test data. Generally in order to obtain full and reliable experimental data close to the ground state, various methods can be used to eliminate the boundary layer influence on the surface of the ground floor. Considering the effect and feasibility of large area fixed floor, we have put forward the suction control method of boundary layer thickness in the 8m×6m wind tunnel of China Aerodynamics Research and Development Center. The fixed floor with 48 suction units and 192 suction holes, which can be individually controlled, is developed. Based on the water ring vacuum pipe, a vacuum suction and control system is designed. Through the experiments, 10 kinds of boundary layer thickness control option are analyzed at the wind speed of 70m/s. Then we get the optimal control option with 30mm boundary layer thickness. At this optimal option, the influence on the flow angle is-0.14° and the height of the floor is also investigated. In the end, the suction floor system is applied in the wind tunnel test of C919, where it is found that at the angle of attack more than 8°, the lift coefficient decreases, the drag coefficient increases and the pitching moment increases.
-
Key words:
- fixed floor /
- suction floor /
- boundary layer /
- 8m×6m /
- wind tunnel /
- test technique
-
表 1 吸气流量配置方案表
Table 1. Different suction flow configurations
序号 总流量
/(N·m3)前8路 (单路最大流量2 N·m3) 后8路 (单路最大流量1 N·m3) 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 1 4.8 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.36 0.36 0.36 0 0 0.36 0.36 0.36 2 4.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0 0 0 0 0 0 0 0 3 4.8 0 0 0 0 0 0 0 0 0.8 0.8 0.8 0 0 0.8 0.8 0.8 4 7.6 0.4 0.4 0.6 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.6 0 0 0.6 0.6 0.6 5 7.6 0.7 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.5 0.5 0.5 0 0 0.5 0.5 0.5 6 7.6 0.8 0.6 0.55 0.5 0.5 0.55 0.6 0.8 0.45 0.45 0.45 0 0 0.45 0.45 0.45 7 7.6 0.8 0.7 0.6 0.5 0.5 0.6 0.7 0.8 0.4 0.4 0.4 0 0 0.4 0.4 0.4 8 13 1.2 1.1 0.95 0.85 0.85 0.95 1.1 1.2 0.8 0.8 0.8 0 0 0.8 0.8 0.8 9 12 1.2 1.1 1 0.9 0.9 1 1.1 1.2 0.6 0.6 0.6 0 0 0.6 0.6 0.6 10 13.2 1.2 1.1 1.05 1 1 1.05 1.1 1.2 0.75 0.75 0.75 0 0 0.75 0.75 0.75 -
[1] 恽起麟.风洞实验[M].北京:国防工业出版社, 2000. [2] 杨帆, 李启良, 陈枫, 等.分布抽吸率对整车风洞试验段流场影响的数值模拟[J].计算机辅助工程, 2008, 17(4):36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ200804009.htmYang F, Li Q L, Chen F, et al. Numerical simulation on influence of distributed suction rate on flow field in test section of full scale wind tunnel[J]. Computer Aided Engineering, 2008, 17(4):36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ200804009.htm [3] 李征初, 杨炯, 梁鉴, 等. Φ3.2m风洞活动地板系统研制[J].实验流体力学, 2011, 25(4):89-93. http://www.syltlx.com/CN/abstract/abstract10643.shtmlLi Z C, Yang J, Liang J, et al. Development of moving belt floor in Φ3.2m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):89-93. http://www.syltlx.com/CN/abstract/abstract10643.shtml [4] 方跃, 周治宇, 张连河.地效试验数据的估算研究[J].实验流体力学, 2015, 29(1):60-65. doi: 10.11729/syltlx20130120Fang Y, Zhou Z Y, Zhang L H. Study on prediction of ground effect test data[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):60-65. doi: 10.11729/syltlx20130120 [5] Schlichting H, Gersten K. Boundary-layer theory[M]. Springer, 2000. [6] 周亿裕.风洞地板边界层控制研究的现状和发展趋势[J].气动实验与测量控制, 1991, 5(1):9-16. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199101001.htm [7] Wulf R. Investigations on a plate with uniform boundary layer suction for ground effects in the 3m×3m low-speed wind-tunnel of DFVLR-AVA[R]. AGARD-CD, 1975. [8] 周晶. 汽车模型风洞地面附面层控制流场计算[D]. 上海: 同济大学, 2000. [9] 徐永定, 韩家琨.风洞地板边界层厚度控制新方法[J].空气动力学学报, 1991, 9(3):361-366. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199103011.htmXu Y D, Han J K. New method for boundary layer thickness control on ground plate in wind tunnel[J]. Acta Aerodynamica Sinica, 1991, 9(3):361-366. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199103011.htm [10] 易仕和, 陈宏, 邹建军, 等.低速风洞均匀抽吸地板系统[J].国防科技大学学报, 1998, 20(1):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ199801005.htmYi S H, Chen H, Zou J J, et al. A plate system with uniform suction in low speed wind tunnel[J]. Journal of National University of Defense Technology, 1998, 20(1):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ199801005.htm [11] 易仕和, 邹建军, 吴桂馥, 等.利用均匀抽吸地板进行高速列车模型地板边界层影响的试验研究[J].流体力学实验与测量, 1997, 11(2):95-100. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702016.htmYi S H, Zou J J, Wu G F, et al. Experimental investigation for ground effects of the high speed train models on a plate with uniform boundary layer suction[J]. Experiments and Measurements in FLuid Mechanics, 1997, 11(2):95-100. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702016.htm [12] 周晶, 陈礼璠, 陈玲. TJ-2汽车模型风洞地面边界层控制机理和控制设备研制[J].上海汽车, 2000, 2:4-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SHQC200002001.htm [13] 傅立敏, 靳春宁.汽车风洞试验地板边界层控制技术[J].汽车工程, 1998, 20(1):60-65. http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199801009.htmFu L M, Jin C N. A study on boundary layer control of vehicle wind tunnel[J]. Automotive Engineering, 1998, 20(1):60-65. http://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199801009.htm [14] 姜叶洁, 宋昕, 张清林.基础抽吸率对汽车风洞试验的影响[J].湖南科技大学学报 (自然科学版), 2012, 27(2):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201202010.htmJiang Y J, Song X, Zhang Q L. Effects of distribute suction rate on vehicle wind tunnel test[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2012, 27(2):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201202010.htm [15] Carr G. A comparison of the ground-plane-suction and moving-belt ground-representation techniques[R]. SAE Technical Paper 880249, 1988. [16] Flaig A. Results of wind tunnel ground effect measurements on Airbus A320 using turbine power simulation and moving tunnel floor techniques[R]. AIAA-1990-1427, 1990. -