The influence of the tip sails shape on the wing aerodynamics in ground effect
-
摘要: 翼尖帆片将原型机翼集中的翼尖涡分散成多个小涡,加快翼尖涡的耗散,从而降低机翼诱导阻力。为进一步了解翼尖帆片对机翼在地面效应下流动特性的影响,分别对安装有3片椭圆形和梯形帆片的NACA4412机翼开展了风洞实验研究。测量了2种帆片机翼的气动力和翼尖涡结构,并通过比较流动结构,分析了2种机翼气动力产生差异的原因。机翼的升、阻力用六分量盒式风洞天平测量,翼尖涡速度分布用七孔探针扫描获得,以机翼弦线为特征长度的雷诺数为1.5×105。当远离地面时,梯形帆片与椭圆帆片的升、阻力差别较小,但随着机翼逐渐接近地面,梯形帆片的增升减阻效率逐渐高于椭圆帆片。而机翼升阻力的差异,主要是由于局部气流方向角对各帆片形成的有效迎角有所差别,使得帆片对主翼产生不同的增升和减阻贡献。Abstract: The function of the wing tip sails is to scatter the concentrated tip vortices into several smaller scale vortex structures, and accelerate the dissipation of tip vortices, thereby reducing the induced drag. In order to study the influence of wing tip sails on the flow fields and aerodynamics of a wing in ground effect, wind tunnel experiment is conducted to measure aerodynamics and tip vortex structures of a NACA4412 wing fitted with three elliptic tip sails and three trapezoidal tip sails respectively, and the reason of the differences between the aerodynamic loads on the two wings is analyzed by comparing the flow fields of tip vortices. The lift and drag forces are measured using a 6-component balance, the velocity distribution of tip vortices is scanned by a 7-hole probe. The Reynolds number based on the chord length of the wing is 1.5×105. The experimental results show that the differences of lift and drag forces between the two wings increase as the wings get closer to the ground, and the trapezoidal tip sails is more efficient in lift augmentation-drag reduction than the elliptic tip sails. The local flow direction and local incidence of each sails are different for the two wings, which result in different contributions in increasing the lift and reducing the drag.
-
表 1 机翼诱导阻力因子随间隙比的变化关系
Table 1. Variation of induced drag factor with the gap ration
(1+δ)/πλ h*=0.15 h*=0.3 h*=1.0 梯形帆片 0.069 0.082 0.113 椭圆帆片 0.080 0.089 0.114 表 2 翼尖涡涡通量在各迎角下的比较(ω为涡量,S为面积)
Table 2. Comparison of tip vortex flux at different angles of attack
涡通量/(ω·S) α=2° α=6° α=12° 椭圆形帆片 8.26 15.83 32.12 梯形帆片 9.93 15.38 30.44 -
[1] Newman B G. Soaring and gliding flight of the black Vulture[J]. Journal of Experimental Biology, 1958, 35:280-285. http://www.researchgate.net/publication/242124205_SOARING_AND_GLIDING_FLIGHT_OF_THE_BLACK_VULTURE [2] Tucker V A. Aerodynamics of gliding flight in a Harris' hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1990, 149:469-489. https://www.researchgate.net/publication/239923824_Aerodynamics_of_gliding_flight_in_a_harris'_hawk_Parabuteo_unicinctus [3] Tucker V A. Pitching equilibrium wing span and tail span in a gliding Harris' hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1992, 165:21-41. https://www.researchgate.net/publication/254471249_Pitching_equilibrium_wing_span_and_tail_span_in_a_gliding_Harris%27_Hawk_Parabuteo_unicinctus [4] Tucker V A. Drag reduction by wing tip slots in a gliding Harri's Hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1993, 198:775-781. https://www.ncbi.nlm.nih.gov/pubmed/9318544 [5] Tucker V A. Gliding birds:reduction of induced drag by wing tip slots between the primary feathers[J]. Journal of Experimental Biology, 1993, 180:285-310. https://www.researchgate.net/publication/255592333_Gliding_birds_Reduction_of_induced_drag_by_wing_tip_slots_between_the_primary_feathers [6] Spillman J J, Allen J E. The use of wing tip sails to reduce vortex drag[J]. Aeronautical Journal, 1978, 82(813):387-395. https://www.researchgate.net/publication/282580953_The_Use_of_Wing_Tip_Sails_to_Reduce_Vortex_Drag [7] Spillman J J, McVitie M. Wing tip sails which give lower drag at all normal flight speeds[J]. Aeronautical Journal, 1984, 88(878):362-369. https://www.researchgate.net/publication/294249726_WING_TIP_SAILS_WHICH_GIVE_LOWER_DRAG_AT_ALL_NORMAL_FLIGHT_SPEEDS [8] 陈明岩, 齐孟卜.翼尖帆片的增升减阻研究[J].航空学报, 1994, 15(6):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB406.000.htmChen M Y, Qi M B. The research of increased lift and reduced drag for wing-tip sails[J]. Acta Aeronautica et Astronautica Sincia, 1994, 15(6):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB406.000.htm [9] 齐孟卜, 陈明岩.翼尖附近流场研究及帆片减阻机理[J].气动实验与测量控制, 1995, 9(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC501.005.htmQi M B, Chen M Y. The study of flow field near the wing tip and the mechanism of drag reduction for wing tip sails[J]. Ae-rodynamic experiment and measurement & Control, 1995, 9(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC501.005.htm [10] Smith M J, Komerath N, Ames R, et al. Performance analysis of awing with multiple winglets[R]. AIAA-2001-2407, 2001. [11] Miklosovic D S. Analytic and experimental investigation of dihedral configurations of three-winglet planforms[J]. Journal of Fluids Engineering, 2008, 130-071103. https://www.researchgate.net/publication/245357259_Analytic_and_Experimental_Investigation_of_Dihedral_Configurations_of_Three-Winglet_Planforms [12] Catalano F M, Ceron-Muñoz H D. Experimental analysis of the aerodynamic characteristics adaptive of multi-winglets[R]. AIAA-2005-1231, 2005. [13] Cosin R, Catalano F M, Correa L G N, et al. Aerodynamic analysis of multi-winglets for low speed aircraft[C]. 27th International Congress of the Aeronautical Sciences, 2010. [14] Srikanth G, Surendra B. Experimental investigation on the effect of Multi-winglets[J]. International Journal of mechanical & Industrial Engineering, 2011, 1(1):43-46. [15] Yang K, Xu S J. Wing tip vortex structure behind an airfoil with flaps at the tip[J]. Science China Physics, Mechanics & Astronomy, 2011, 54(4):743-747. http://mall.cnki.net/magazine/Article/JGXG201104027.htm [16] 杨可, 黄浩, 徐胜金.组合小翼和翼梢喷流对翼尖涡的影响实验研究[J].实验流体力学, 2014, 28(6):27-38. http://www.syltlx.com/CN/Y2014/V28/I6/27Yang K, Huang H, Xu S J. Experimental study of effects of multi-winglets and tip blowing upon wingtip vortex[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):27-38. http://www.syltlx.com/CN/Y2014/V28/I6/27 [17] Withers P C, Timko P L. The significance of ground effect to the aerodynamics cost of flight and energetics of the black ski-mmer[J]. Journal of Experimental Biology, 1977, 70:13-26. https://www.researchgate.net/publication/268288666_The_significance_of_ground_effect_to_the_aerodynamic_cost_of_flight_and_energetics_of_the_Black_Skimmer_Rhyncops_nigra [18] Hainsworth F R. Induced drag savings from ground effect and formation flight in brown pelicans[J]. Journal of Experimental Biology, 1988, 135:431-444. http://www.academia.edu/3180003/INDUCED_DRAG_SAVINGS_FROM_GROUND_EFFECT_AND_FORMATION_FLIGHT_IN_BROWN_PELICANS [19] 江永泉.飞机翼梢小翼设计[M].北京:航空工业出版社, 2009.Jiang Y Q. Design of aircraft winglet[M]. Beijing:The Publishing Company of Aviation Industry, 2009. [20] 杨岞生, 俞守勤, 飞行器部件空气动力学[M].北京:航空工业出版社, 1987.Yang Z S, Yu S Q. Aerodynamics of aircraft components[M]. Beijing:The publishing company of aviation industry, 1987. [21] Byelinskyy V G, Zinchuk P I. Hydrodynamical characteristics of an ekranoplane wing flying near the wavy sea surface[C]//RTO Meeting Proceedings, 1991:1-12. [22] 章旷.机翼地面效应拖曳水槽实验研究[D].上海大学, 2016. [23] Kate J, Plotkin A. Low-speed aerodynamics--from wing theory to panel methods[M]. McGraw-Hill Inc, 1991. -