Experimental study on Reynolds number effect on aerodynamic pressure and forces of cylinder
-
摘要: 通过刚性模型测压风洞试验,研究了圆柱的气动阻力、气动升力系数和风压系数随雷诺数的变化规律,从流场分布的角度分析了气动力变化的原因,并研究了雷诺数影响下的流场在圆柱轴向的相关性。结果表明:在亚临界雷诺数区域,在时间平均上流场沿模型两侧呈对称分布,雷诺数对平均阻力系数和流场影响较小,平均升力系数基本为零。在临界雷诺数区域,随着特定区域大负压区的出现,流场不再对称,出现不容忽视的平均升力和脉动升力。在超临界雷诺数区域,随着对称侧大负压区的出现,流场恢复对称状态,平均升力基本消失。雷诺数对流场的轴向相关性有显著的影响。在雷诺数较低时(亚临界区域),卡门涡在轴向上的尺度相对较大,而随着雷诺数的提高,该尺度逐渐减小,各断面流场的相关性降低。Abstract: By wind tunnel tests, Reynolds number effect on drag force coefficient, lift force coefficient and wind pressure coefficient of cylinder were measured, the mechanism of the aerodynamic force variation from the point of view of the flow field distribution was analyzed, and the correlation of the flow field in the cylinder axis direction under the Reynolds number effect was studied. Results show that in the subcritical Reynolds number regime, the time averaged flow field around the cylinder model is symmetric, the Reynolds number has little influence on the averaged drag force coefficient and flow field, and the averaged lift force is around zero. In the critical Reynolds number regime, with the appearance of large amplitude negative pressure in certain areas, flow field becomes asymmetric, and the averaged lift force as well as fluctuation lift force appears. In the supercritical Reynolds number regime, with the appearance of large amplitude negative pressure on the two sides, flow field becomes to symmetric again, and the averaged lift force disappears. Reynolds number has obvious effect on the flow field correlation along the cylinder axis. In the subcritical Reynolds number regime, the scale of the Karman vortex in the cylinder axis direction is relatively large, while the scale becomes small with the increase of Reynolds number.
-
Key words:
- cylinder /
- aerodynamic force /
- flow field distribution /
- Reynolds number /
- correlation in axis direction
-
表 1 低速试验段模型试验工况
Table 1. Test cases in low speed test section
风速范围/(m·s-1) 风速步长/(m·s-1) Re/104 5~13 2.0 9.3~24.3 13~21 0.3/0.4 24.3~39.2 表 2 高速试验段模型试验工况
Table 2. Test cases in high speed test section
风速范围/(m·s-1) 风速步长/(m·s-1) Re/104 13.7 ~ 40.9 2.7 10~30 40.9 ~ 43.7 1.3 30~32 表 3 相关系数与相关程度对照表
Table 3. Table of correlation coefficient and degree
相关系数 0~±0.30 ±0.30~±0.50 ±0.50~±0.80 ±0.80~±1.00 相关程度 微相关 实相关 显著相关 高度相关 -
[1] 裴岷山, 张喜刚, 朱斌, 等. 斜拉桥的拉索纵桥向风荷载计算方法研究[J]. 中国工程科学, 2009, 11(3): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200903004.htmPei M S, Zhang X G, Zhu B, et al. Study on longitudinal wind load calculation method of cables for cable-stayed bridge[J]. Engineering Sciences, 2009, 11(3): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200903004.htm [2] Roshko A. Experiments on the flow past a circle cylinder at very high Reynolds numbers[J]. Journal of Fluids Mechanics, 1961, 10: 345-356. doi: 10.1017/S0022112061000950 [3] Bearman P W. On vortex shedding from a circle cylinder in the critical Reynolds number regime[J]. Journal of Fluids Mechanics, 1968, 37: 577-585. [4] 崔冰, 曾宪武. 南京二桥南汊大桥主桥结构设计[C]//中国土木工程学会桥梁及结构工程学会第十三届年会论文集, 北京: 人民交通出版社, 1998: 264-272.Cui B, Zeng X W. Structure design of the nancha bridge of nanjing yangtse river bridge[C]//Proceedings of the 13th National Conference on Bridge and Structure Engineering, Beijing: China Communications Press, 1998: 264-272. [5] 张忠义, 刘聪. 南京长江第二大桥桥位风速观测及设计风速的计算[J]. 气象科学, 2000, 20(2): 200-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200002011.htmZhang Z Y, Liu C. Calculation of desighing wind velocity and wind observation at the Nanjing 2nd Yangtse River Bridge[J]. Scientia Meteorologica Sinica, 2000, 20(2): 200-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200002011.htm [6] 刘庆宽, 郑云飞, 白雨润, 等. 斜拉索风雨振气动抑振措施的参数优化[J]. 振动与冲击, 2015, 34(8): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508006.htmLiu Q K, Zheng Y F, Bai Y R, et al. Parametric optimization of aerodynamic and vibration measure for rain-wind induced vibration of cables[J]. Journal of Vibration and Shock, 2015, 34(8): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508006.htm [7] 刘庆宽, 王毅, 郑云飞, 等. 水线-雷诺数效应-斜拉索振动关系的试验研究[J]. 工程力学, 2012, 29(11): 257-265.Liu Q K, Wang Y, Zheng Y F, et al. Experimental study on the relation of water rivulet-Reynolds number effect-cable vibration[J]. Engineering Mechanics, 2012, 29(11): 257-265. [8] 刘庆宽, 张峰, 马文勇, 等. 斜拉索雷诺数效应与风致振动的试验研究[J]. 振动与冲击, 2011, 30(12): 114-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201112026.htmLiu Q K, Zhang F, Ma W Y, et al. Tests for Reynolds number effect and wind-induced vibration of stay cables[J]. Journal of Vibration and Shock, 2011, 30(12): 114-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201112026.htm [9] Chen S, Irwin P A, Jakobsen J B, et al. Divergent motion of cables exposed to skewed wind[C]//Proceedings of the 5th International Symposium on Cable Dynamics. Santa Margherita Ligure, Italy, 2003: 271-278. [10] Matsumoto M, Yagi T, Shima T, et al. The effect of the Reynolds number in aerodynamic cable vibration of cable-stayed bridge[C]//Proceedings of the 19th National Symposium on Wind Engineering. Tokyo, Japan, 2006: 507-512. [11] 刘庆宽. 多功能大气边界层风洞的设计与建设[J]. 实验流体力学, 2011, 25(3): 66-70. http://syltlx.cars.org.cn/CN/article/searchArticle.do#Liu Q K. Aerodynamic and structure design of multifunction boundary-layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 66-70. http://syltlx.cars.org.cn/CN/article/searchArticle.do# [12] 马文勇, 刘庆宽, 刘小兵, 等. 风洞试验中测压管路信号畸变及修正研究[J]. 实验流体力学, 2013, 27(4): 71-77. http://syltlx.cars.org.cn/CN/article/searchArticle.do#Ma W Y, Liu Q K, Liu X B, et al. Study on correction and distortion effects caused by tubing systems of pressure measurements in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 71-77. http://syltlx.cars.org.cn/CN/article/searchArticle.do# [13] Hackett J E. Tunnel-induced gradients and their effect on drag[J]. American Institute of Aeronautics and Astronautics, 1996, 34(12): 2575-2581. doi: 10.2514/3.13441 [14] Cooper K R, Mercker E, Wiedemann J. Improved blockage corrections for bluff bodies in closed and open wind tunnels[C]//Wind Engineering into 21st Century: Proceedings of the 10th International Conference on Wind Engineering. Copenhagen, Denmark, 1999: 1627-1634. [15] JTG/T D60-01—2004. 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2004.JTG/T D60-01—2004. Wind-resistant design specification for highway bridges[S]. Beijing: China Communications Press, 2004. [16] Poulin S, Larsen A. Drag loading of circular cylinders inclined in the along-wind direction[J]. Journal of Wind Eingineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1350-1363. http://cn.bing.com/academic/profile?id=2032194263&encoded=0&v=paper_preview&mkt=zh-cn [17] 王卫华, 李明水, 陈忻. 斜拉索的阻力系数研究[J]. 空气动力学学报, 2005, 23(3): 389-393. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200503023.htmWang W H, Li M S, Chen X. Investigation on drag coefficients of stay-cables[J]. Acta Aerodynamica Sinica, 2005, 23(3): 389-393. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200503023.htm [18] 林志兴, 杨立波, 李文勃. 斜拉索顺桥向风阻系数的试验研究[J]. 郑州大学学报: 工学版, 2005, 26(1): 38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY200501010.htmLin Z X, Yang L B, Li W B. Experimental study on drag coefficients of stay-cables corresponding to wind direction along the bridge central line[J]. Journal of Zhengzhou University: Engineering Science Edition, 2005, 26(1): 38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY200501010.htm [19] Farell C, Blessm A J. On critical flow around smooth circular cylinders[J]. Journal of Fluid Mechanics, 1983, 136: 375-391. doi: 10.1017/S0022112083002190 -