Research progress on rotor reverse flow and dynamic stall flow control methods
-
摘要: 直升机在大载荷高速前飞时,旋翼桨叶桨距变化较大,易发生动态失速;后行桨叶内段旋转线速度较低,在来流叠加下形成反流区,导致桨叶气动效率降低,由此产生的桨叶疲劳失效和升力下降问题阻碍直升机性能的进一步提升。流动控制方法在改善翼型气动特性方面具有较大潜能,是提升旋翼气动效率、保障直升机安全的有效路径之一。本文阐述了旋翼反流区和动态失速的形成机理及非定常流动特征,综述了2种特殊气动现象的研究成果。对比分析了优化翼型几何构型、添加表面机械结构、吹气控制、等离子体控制、合成射流控制和后缘小翼控制等流动控制方法对旋翼动态失速及反流控制的机理,总结了控制参数和流场参数对控制效果的影响规律,分析了各种方法在应用中存在的问题,对发展方向进行了展望。Abstract: When a helicopter flies forward at high speed with heavy load, the blade pitch changes greatly and dynamic stall is prone to occur. The lower rotational speed of the inner section of the trailing blade leads to the formation of a reverse flow zone under the superposition of the incoming flow, resulting in a reduction in the aerodynamic efficiency of the blade. The problems of blade fatigue failure and lift reduction hinder the further improvement of helicopter performance. Flow control methods have great potential in improving the aerodynamic characte-ristics of airfoils, and are effective ways to improve the rotor aerodynamic efficiency and ensure helicopter safety and stability. In this paper, the formation mechanism and unsteady flow characteristics of the reverse flow zone and dynamic stall are firstly described, and the research results of two special aerodynamic phenomena are summarized. On this basis, a comparative analysis of flow control methods such as variable airfoil configuration, surface mechanical devices, air-blowing control, plasma actuator, synthetic jet actuator, and trailing edge flap on the mechanism of rotor dynamic stall and reverse flow control is conducted, and the effects of control parameters and flow field parameters on control effectiveness are summarized. Finally, the remain-ing problems and solutions in the application of various flow control methods are prospected.
-
Keywords:
- rotorcraft /
- dynamic stall /
- reverse flow /
- flow control
-
0 引言
当飞机在云层中飞行时,云层中的过冷水滴会在飞机表面产生结冰现象,破坏其气动外形,影响气动性能,严重威胁飞行安全[1-2]。鉴于飞机结冰的严重危害,民用航空适航规章要求制造商通过结冰防护等手段,确保飞机在结冰气象条件下的飞行安全。结冰风洞试验是目前重要的飞机结冰适航审定手段,已经广泛应用于飞机适航审定实践[3]。
为表明结冰风洞具备开展结冰适航审定试验的能力,结冰风洞必须开展全面的流场品质评估,验证其流场品质符合结冰风洞适航应用的要求(需要指出的是:尽管民用航空适航规章并未直接对结冰风洞提出审定要求,但在飞机适航取证前,结冰风洞试验能力必须得到适航审定方的认可,因此结冰风洞仍需满足适航应用的相关要求),热流场品质是其中一项重要的验证内容。近年来,随着国内大型结冰风洞——3 m×2 m结冰风洞——的建成[4]、国产C919客机完成首飞并全面进入适航取证阶段,在C919客机适航取证的需求牵引下,结冰风洞流场符合性研究成为目前国内大型结冰风洞适航应用领域内的研究热点,其中热流场符合性是相关研究的重要内容。
针对结冰风洞热流场,世界上主要结冰风洞均开展了相关研究。为改善热流场品质,美国NASA Glenn IRT结冰风洞对制冷系统进行了多次升级改造[5-11],建立了系统的热流场品质评估方法,开展了多期热流场品质评估试验,试验结果不仅为制冷系统升级改造提供了数据支撑和改造思路,还为该风洞的适航应用提供了支撑。作为目前国际上尺寸最大、性能最完善的结冰风洞之一,意大利CIRA IWT结冰风洞[12]也发展了配套的热流场校测设备和方法,开展了全面的热流场校测[13],为该风洞的适航应用奠定了基础。此外,美国波音BRAIT结冰风洞和Cox结冰风洞均开展了热流场品质评估试验[14-15],试验结果支撑了这些风洞的适航应用。国内目前尚未开展系统的大型结冰风洞热流场符合性验证研究,3 m×2 m结冰风洞缺乏适航应用的基础。
本文建立了结冰风洞热流场符合性验证方法,针对3 m×2 m结冰风洞主试验段构型,开展了热流场符合性验证试验,考察了试验段气流总温、试验段气流速度和喷嘴干空气射流对热流场空间均匀性和时间稳定性的影响,获得了试验段气流总温修正关系,形成了3 m×2 m结冰风洞主试验段热流场控制包线,为其适航应用奠定了基础。
1 3 m×2 m结冰风洞简介
中国空气动力研究与发展中心3 m×2 m结冰风洞是一座闭口回流式高亚声速风洞(图 1),主要包括结冰喷雾系统、制冷系统、高度模拟系统和风机动力系统。结冰喷雾系统利用喷雾耙和喷嘴产生结冰云雾,其中喷雾耙安装于稳定段蜂窝器下游、收缩段入口位置,共20排,每排设置50个喷嘴安装位置,共计安装1000个喷嘴。制冷系统采用液氨作为制冷媒介,通过热交换器换热,控制气流温度,制冷系统最大功率约为11 MW。该风洞拥有3个可更换试验段,分别为主试验段、次试验段和高速试验段(各试验段尺寸见表 1)。本文仅针对主试验段构型开展热流场符合性验证研究。
表 1 试验段尺寸参数Table 1 The test section size parametersTest section Dimension Height/m Width/m Length/m Maintest section 2 3 6.5 Secondarytest section 3.2 4.8 9.0 High speed test section 1.5 2 4.5 结冰风洞的总温探针为四线制PT-100铂电阻总温探针,探针温度测量范围为-50 ℃~50 ℃,精度为±0.2 ℃。8根总温探针安装于热交换器出口处,分别测量热交换器8个模块出口中心处的气流总温,探针位置如图 2所示。
2 结冰风洞热流场符合性验证方法
图 3为结冰风洞热流场符合性验证方法流程图,主要包括试验标准、试验内容、试验仪器、试验方法和数据处理等5部分内容,本节分别进行介绍。
2.1 试验标准及内容
目前,国际上普遍依据国际自动机工程师学会(SAE International)发布的标准文件 Calibration and acceptance of icing wind tunnels(SAE ARP 5905-2003)验证结冰风洞流场符合性[16]。该文件明确给出了结冰风洞在适航应用中需要满足的流场品质指标,其中的热流场品质指标如表 2所示。表中针对气流静温,分别给出了测试设备最大不确定度、空间均匀性和时间稳定性等3个符合性指标。本文依据SAE ARP 5905-2003标准,以气流总温为试验对象,开展热流场符合性研究。需要指出的是:由于气流总温可通过总温探针直接测量得到,进而可以根据气流速度计算得到气流静温,因此本文选择气流总温作为试验对象,更具有代表性。
表 2 结冰风洞热流场品质指标Table 2 The quality index of thermodynamic flowfield of icing wind tunnelItems Static air temperature Ts < -30 ℃ -30 ℃ < Ts < 5 ℃ Measurement instrumentation
maximum uncertainty±2.0 ℃ ±0.5 ℃ Spatial uniformity ±2.0 ℃ ±1.0 ℃ Temporal stability ±2.0 ℃ ±0.5 ℃ 2.2 试验仪器
采用总温探针和温度格栅装置测量试验段内的气流总温,如图 4所示。
总温探针为四线制PT-1000铂电阻总温探针,如图 4(a)所示,探针长100 mm、外径6 mm,温度测量范围为-50 ℃~50 ℃,精度为±0.2 ℃。试验前对总温探针进行标定[8],获得了总温恢复系数,在马赫数0~0.6范围内,探针恢复率范围为0.994~1。
温度格栅装置由7个垂直栅条和4个水平栅条组成,如图 4(b)所示。垂直栅条厚20 mm、宽100 mm,栅条间距为375 mm。
垂直栅条前缘设置7个探针安装孔,如图 5所示。图中x轴从试验段左壁(沿流向左侧为左壁)指向右壁,y轴从试验段下壁面指向上壁面。试验段内共设置49个测点,其中红点表示试验段中心线处测点,测点的横向(x方向)、纵向(y方向)间距分别为375和250 mm,覆盖75%横纵向试验段区域。
2.3 试验方法及数据处理
气流总温试验工况如表 3所示,表中给出了试验段名义总温(Tt)、试验段名义气流速度(vTS)、喷嘴喷气压力(pa)和喷雾耙入口干空气温度(Ta)的试验参数。为防止喷雾系统在低温环境下损坏,应保持热气在喷雾耙内持续流动以维持耙内温度,因此最小喷气气压选择0.03 MPa。
表 3 温度场校测工况Table 3 Test conditions of airflow total temperature measurementParameter Value Tt/ ℃ -30, -20, -15, -10, -5, 0, 5 vTS/(m·s-1) 40, 80, 120, 140 pa/MPa 0.03, 0.40, 0.90 Ta/ ℃ 80 试验时,当气流参数稳定后,同时采集试验段和风洞气流总温数据,各测点参数采样时间为60 s,采样频率1 Hz。
试验后,对试验段气流总温数据进行总温恢复系数修正,获得当地气流总温Tt, local:
(1) 式中,Tt, probe为总温探针测量总温(单位为℃),Rr为探针总温恢复率。
气流总温空间分布和时间分布以试验段中心线处气流总温Ttc, TS为基准,采用气流总温空间偏差ΔTt, S和时间偏差ΔTt, T表征:
(2) 式中:下标mt表示时间平均,Tt, TS为试验段各测量点处气流总温。进而采用总温空间偏差和时间偏差的标准差(σ(ΔTt, S)、σ(ΔTt, T))以及最大绝对值(|ΔTt, S|max和|ΔTt, T|max)评估试验段内气流总温的空间均匀性和试验段中心处的时间稳定性。
最后,利用试验段中心线处的气流总温Ttc, TS与风洞测量气流总温Tt, WT,获得试验段总温修正关系:
(3) 式中,KTt为总温修正函数。
3 试验结果与分析讨论
3.1 气流总温
3.1.1 气流总温的空间均匀性
为评估试验段气流总温的空间均匀性,图 6给出了试验段气流总温空间分布云图,包括40、80、120和140 m/s的气流速度条件下,气流总温0 ℃、-5 ℃和-20 ℃对应的典型试验结果(喷嘴气压均为0.03 MPa)。图中,红色虚线框表示模型区,范围为-750 mm≤x≤750 mm、-500 mm≤y≤500 mm。可以看出:随着试验段气流总温和气流速度的降低,试验段上下壁面附近逐渐出现总温偏差超过1 ℃的非均匀峰值区域,且非均匀峰值区域不断向模型区内部发展,特别是在140 m/s工况下,非均匀峰值区域已经发展到模型区的内部核心区域。由此可见,基于目前的制冷系统性能,降低试验段气流总温和提高试验段气流速度均会减弱试验段内热流场的空间均匀性。
为进一步定量评估试验段热流场的空间均匀性,图 7给出了试验段模型区内的气流总温空间偏差标准差和最大绝对值。图中黑色虚线表示气流总温空间均匀性指标(见表 2)。可以看出:在各工况下,气流总温空间偏差标准差均满足空间均匀性指标要求,且在40~120 m/s、-20 ℃~0 ℃工况范围内标准差一致性较好,均小于0.6 ℃;随着试验段气流速度增大及气流总温降低,气流总温空间偏差最大绝对值整体增大,且逐渐超出标准范围,这与试验段上下壁面附近的非均匀峰值区域发展扩大相对应。在40、80和120 m/s条件下,非均匀峰值区主要集中于模型区边界处(如图 6所示),当气流总温高于-20 ℃后,温度偏差最大绝对值均小于1.5 ℃;但在140 m/s条件下,当温度低于-5 ℃后,非均匀峰值区发展扩大至模型区核心区域,温度偏差峰值整体增大(普遍超过1.5 ℃);此外,喷嘴干空气射流对气流总温空间均匀性并无显著影响。由此可见,模型区内气流总温空间均匀性在大部分范围内均满足指标要求,其中40 ~120 m/s、-20 ℃~0 ℃范围内的热流场空间均匀性最优,但是随着试验段气流速度增大以及气流总温降低,模型区内逐渐出现总温超标的峰值区域,尤其是在140 m/s条件下,模型区内普遍存在超标区域。
3.1.2 气流总温的时间稳定性
为评估试验段气流总温的时间稳定性,图 8给出了试验段中心线处的气流总温时间偏差变化曲线,包括喷嘴气压0.03、0.40和0.90 MPa状态下,气流速度40、80、120和140 m/s、气流总温0 ℃和-20 ℃对应的试验结果。可以看出:各工况下,气流总温时间偏差均在±0.5 ℃范围内;-20 ℃条件下的总温偏差脉动程度比0 ℃条件下更加剧烈,而试验段气流速度和喷嘴干空气射流对气流总温时间偏差并无显著影响。
进一步地,图 9给出了试验段中心线处的气流总温时间偏差标准差和最大绝对值。可以看出:试验段气流速度和气流总温以及喷嘴干空气射流对气流总温的时间稳定性并无显著影响,各工况下的气流总温时间偏差标准差和最大绝对值分别小于0.2 ℃和0.4 ℃。
3.1.3 气流总温修正关系和不确定度
图 10为试验段中心线处的气流总温修正关系和不确定度,包括喷嘴气压0.03、0.40和0.90 MPa对应的试验结果、拟合曲线和不确定度。从图 10(a)可以看出,风洞采集的气流总温与试验段中心线处的气流总温具有显著的线性关系,其拟合公式为:
(4) 式中,KT和BT分别为斜率和截距函数,均为喷嘴气压的函数。
在图 10(b)中,纵轴为采用拟合公式计算的总温(Tta, TS)与试验段中心线处的气流总温之差,黑色虚线为不确定度指标。从图中可以看出,在0.03和0.40 MPa条件下,拟合温度偏差均满足标准要求,但在0.90 MPa条件下,存在个别超标的温度点,且这些点主要集中在40 m/s速度条件下,如图中的阴影区所示。考虑到主要试验工况下喷嘴气压均小于0.40 MPa,因此整体而言温度拟合公式的不确定度满足标准要求。
图 11给出了试验段中心线处气流总温与风洞测量总温之差。从图中可以看出:喷嘴干空气射流会提高气流温差,随着喷嘴气压增大,温差不断增大,但增大幅度会随着试验段气流速度的增大而减小,其中,在40 m/s、-30 ℃工况下最大温差超过2 ℃,而超过80 m/s后,温差普遍小于1 ℃(在140 m/s、-20 ℃工况下,温度场均匀性较差,则此时温差超过1 ℃)。这主要是因为:喷嘴向试验气流中注入的高温空气将自身携带的能量传递给试验气流,增大了试验段气流总温,且随着喷嘴气压增大,喷嘴热气流量增大,进而提高了试验段气流总温的增大幅度;但随着试验段气流速度的增大,试验气流流量不断增大,减弱了喷嘴干空气射流对试验气流的影响,导致气流总温的增大幅度减小。
3.2 结冰风洞热流场控制包线
根据结冰风洞主试验段热流场品质评估结果,给出了结冰风洞主试验段热流场控制包线,如图 12所示,其中横轴为试验段名义气流速度,纵轴为试验段名义气流总温,黑点为试验工况点。图中综合考虑试验段模型区内热流场的空间均匀性和时间稳定性,给出了控制包线(红线区域),在该包线范围内,模型区内热流场品质基本满足SAE ARP 5905-2003的指标要求,但在模型区边界处仍存在温度偏差超标的峰值区。需要指出的是,在高风速(超过140 m/s)和低总温(小于-20 ℃)条件下,试验段模型区内存在明显的不均匀峰值区,该区域严重影响气流总温的空间均匀性,制约着结冰风洞的试验模拟范围,因此,需要对3 m×2 m结冰风洞制冷系统进行升级改造,提高高风速和低总温条件下的温度空间均匀性,扩展试验模拟范围。
4 结论
本文建立了结冰风洞热流场符合性验证方法,开展了3 m×2 m结冰风洞主试验段热流场符合性验证试验,得到以下结论:
(1) 基于目前制冷系统性能,降低试验段气流总温和提高试验段气流速度会减弱试验段内热流场的空间均匀性,但对时间稳定性并无显著影响。
(2) 喷嘴干空气射流对试验段模型区内气流总温的空间均匀性和时间稳定性并无显著影响,但会提高试验段气流总温,尤其对40 m/s条件下的热流场的影响最为显著。
(3) 在主要试验条件下,结冰风洞热流场品质基本满足SAE ARP 5905-2003指标要求。
-
表 1 旋翼系统流动控制方法对比
Table 1 Comparison of flow methods for rotor system
流动控制方法 控制原理 主要优点 主要缺点 实现难易度 应用于旋翼的案例 优化翼型几何构型 改变翼型升阻特性 结构简单,稳定可靠 非定常状态控制效率低 容易 H160直升机[24],
验证机X2TD[25]添加表面机械结构 改变边界层能量分布
和外部流场结构结构简单,稳定可靠 非定常状态控制效率低,
产生“废阻”多主动式控制较难 EC−145[26] 吹气控制 注入高能射流 控制效率高 系统结构复杂 供气系统难实现 仅有专利 等离子体控制 电场诱导射流 结构简单,体积小 极端环境适应力弱,能效比低 电源和控制系统较难实现 仅有专利 合成射流控制 振动腔赋能射流 无需气源 极端环境适应力弱,高速条件下控制效率低 复杂流场下较难实现 仅有专利 后缘小翼控制 改变外部流场结构 控制效率高 控制机构和策略待优化 主动式控制较难 MD900风洞模型[27] -
[1] LEISHMAN G J Principles of helicopter aerodynamics with CD extra[M]. 2nd edition. Cambridge: Cambridge University Press, 2006.
[2] 张卫国, 李国强, 李栋, 等. 旋翼翼型动态风洞试验技术研究[J]. 实验流体力学, 2023, 37(2): 78–93. DOI: 10.11729/syltlx20210147 ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel testing of rotor airfoil[J]. Journal of experiments in fluid mechanics, 2023, 37(2): 78–93. doi: 10.11729/syltlx20210147
[3] SANTRA S, GREENBLATT D. Dynamic stall control model for pitching airfoils with slot blowing[J]. AIAA Journal, 2021, 59(1): 400–404. doi: 10.2514/1.J059818
[4] 张卫国, 李国强, 宋奎辉, 等. 旋翼翼型高速风洞动态试验装置研制[J]. 工程设计学报, 2022, 29(4): 500–509. DOI: 10.3785/j.issn.1006-754X.2022.00.056 ZHANG W G, LI G Q, SONG K H, et al. Development of dynamic test equipment for rotor airfoil in high speed wind tunnel[J]. Chinese Journal of Engineering Design, 2022, 29(4): 500–509. doi: 10.3785/j.issn.1006-754X.2022.00.056
[5] 史志伟, 耿存杰, 明晓, 等. 旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J]. 实验流体力学, 2007, 21(3): 18–23. DOI: 10.3969/j.issn.1672-9897.2007.03.004 SHI Z W, GENG C J, MING X, et al. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18–23. doi: 10.3969/j.issn.1672-9897.2007.03.004
[6] BAILEY F J, Jr, GUSTAFSON F B. Observations in flight of the region of stalled flow over the blades of an autogiro rotor[R]. NACA-TN-741, 1939.
[7] DATTA A, YEO H, NORMAN T R. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios[J]. Journal of the American Helicopter Society, 2013, 58(2): 1–17. doi: 10.4050/jahs.58.022004
[8] 袁明川, 杨永飞, 林永峰. 高速直升机旋翼反流区桨叶剖面翼型气动特性CFD分析[J]. 直升机技术, 2015(1): 1–5, 12. DOI: 10.3969/j.issn.1673-1220.2015.01.001 YUAN M C, YANG Y F, LIN Y F. CFD analysis on aerodynamic characteristics of blade profiles in reverse flow region of high speed helicopter rotor[J]. Helicopter Technique, 2015(1): 1–5, 12. doi: 10.3969/j.issn.1673-1220.2015.01.001
[9] HASSAN A A, STRAUB F K, NOONAN K W. Experimental/numerical evaluation of integral trailing edge flaps for helicopter rotor applications[J]. Journal of the American Helicopter Society, 2005, 50(1): 3–17. doi: 10.4050/1.3092838
[10] 孔卫红, 陈仁良. 反流区对复合高速直升机旋翼气动特性的影响[J]. 航空学报, 2011, 32(2): 223–230. KONG W H, CHEN R L. Effect of reverse flow region on characteristics of compound high speed helicopter rotor[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 223–230.
[11] LIND A H, SMITH L R, MILLUZZO J I, et al. Reynolds number effects on rotor blade sections in reverse flow[J]. Journal of Aircraft, 2016, 53(5): 1248–1260. doi: 10.2514/1.C033556
[12] MABEY D. Some aspects of aircraft dynamic loads due to flow separation[J]. Progress in Aerospace Sciences, 1989, 26(2): 115–151. doi: 10.1016/0376-0421(89)90006-7
[13] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36: 413–455. doi: 10.1146/annurev.fluid.36.050802.122128
[14] GARDNER A D, JONES A R, MULLENERS K, et al. Review of rotating wing dynamic stall: experiments and flow control[J]. Progress in Aerospace Sciences, 2023, 137: 100887. doi: 10.1016/j.paerosci.2023.100887
[15] ZHU C Y, QIU Y N, WANG T G. Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: a comparative study[J]. Energy, 2021, 222: 120004. doi: 10.1016/j.energy.2021.120004
[16] 陈恺, 张震宇, 王同光. 反流及径向流动相互作用下刚性旋翼气动特性研究[J]. 南京航空航天大学学报, 2019, 51(2): 187–193. DOI: 10.16356/j.1005-2615.2019.02.008 CHEN K, ZHANG Z Y, WANG T G. Numerical study of sweep effect on aerodynamic characteristics of helicopter rotor blade in reverse flow[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 187–193. doi: 10.16356/j.1005-2615.2019.02.008
[17] 钱宇, 蒋皓. 基于动网格技术的机翼动态失速仿真分析[J]. 科学技术与工程, 2021, 21(15): 6501–6505. DOI: 10.3969/j.issn.1671-1815.2021.15.055 QIAN Y, JIANG H. Simulation analysis of wing dynamic stall based on dynamic mesh technology[J]. Science Technology and Engineering, 2021, 21(15): 6501–6505. doi: 10.3969/j.issn.1671-1815.2021.15.055
[18] CARTA M, PUTZU R, GHISU T. A comparison of plunging- and pitching-induced deep dynamic stall on an SD7003 airfoil using URANS and LES simulations[J]. Aerospace Science and Technology, 2022, 121: 107307. doi: 10.1016/j.ast.2021.107307
[19] RAGHAV V, MAYO M, LOZANO R, et al. Evidence of vortex-induced lift on a yawed wing in reverse flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(11): 2130–2137. doi: 10.1177/0954410013511597
[20] SMITH L R, JONES A R. Measurements on a yawed rotor blade pitching in reverse flow[J]. Physical Review Fluids, 2019, 4(3): 034703. doi: 10.1103/physrevfluids.4.034703
[21] 谢凯, ABBAS L K, 陈东阳, 等. 翼型非定常来流下复合运动动态失速仿真[J]. 哈尔滨工程大学学报, 2019, 40(5): 865–871. DOI: 10.11990/jheu.201711100 XIE K, ABBAS L K, CHEN D Y, et al. Numerical simulations on dynamic stall of a complex motion of airfoil under unsteady freestream velocity[J]. Journal of Harbin Engineering University, 2019, 40(5): 865–871. doi: 10.11990/jheu.201711100
[22] CRITZOS C C, HEYSON H H, BOSWINKLE R W, Jr. Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0° to 180°[R]. NACA-TN-3361, 1955.
[23] SMITH M J. An assessment of the state-of-the-art from the 2019 ARO dynamic stall workshop[C]//Proc of the AIAA Aviation 2020 Forum. 2020: 2697. doi: 10.2514/6.2020-2697
[24] HICKS M A, BARBER A E II, BABBITT P C. The nucleophilic attack six-bladed β-propeller (N6P) super-family[M]//ORENGO C, BATEMAN A. Protein Families: Relating Protein Sequence, Structure, and Function. NJ, USA: John Wiley & Sons, Inc., 2013: 125-158. doi: 10.1002/9781118743089.ch6
[25] BAGAI A. Aerodynamic design of the X2 technology demonstrator™ main rotor blade[J]. Annual Forum Proceedings - American Helicopter Society, 2008, 64(1): 29.
[26] ASHTON N, BILLARD F, MOULINEC C, et al. The numerical simulation of the flow over a EC145 helicopter fuselage using HPC facilities[C]//Proc of the 23rd International Conference on Parallel Computational Fluid Dynamics. 2011.
[27] SHEN J W, CHOPRA I. A parametric design study for a swashplateless helicopter rotor with trailing-edge flaps[J]. Journal of the American Helicopter Society, 2004, 49(1): 43–53. doi: 10.4050/jahs.49.43
[28] LIND A H, LEFEBVRE J N, JONES A R. Time-averaged aerodynamics of sharp and blunt trailing-edge static airfoils in reverse flow[J]. AIAA Journal, 2014, 52(12): 2751–2764. doi: 10.2514/1.J052967
[29] LIND A H, JONES A R. Vortex shedding from airfoils in reverse flow[J]. AIAA Journal, 2015, 53(9): 2621–2633. doi: 10.2514/1.J053764
[30] LIND A H, JONES A R. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section[J]. Physics of Fluids, 2016, 28(7): 077102. doi: 10.1063/1.4958334
[31] 厉聪聪, 史勇杰, 徐国华, 等. 基于动态前缘下垂的提升旋翼前飞性能的研究[J]. 西北工业大学学报, 2021, 39(3): 668–674. DOI: 10.3969/j.issn.1000-2758.2021.03.025 LI C C, SHI Y J, XU G H, et al. Research on the forward flight performance of rotor based on variable-droop leading edge[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 668–674. doi: 10.3969/j.issn.1000-2758.2021.03.025
[32] 蔡畅. 仿座头鲸鳍肢前缘凸起对翼型失速特性控制机理研究[D]. 北京: 清华大学, 2018: 105-106. CAI C. Effects of leading-edge protuberances inspired by humpback whale flipper on airfoil stall control[D]. Beijing: Tsinghua University, 2018: 105-106. doi: 10.27266/d.cnki.gqhau.2018.000320
[33] 侯宇飞, 李志平. 仿生正弦前缘对翼面动态失速的影响[J]. 航空学报, 2020, 41(1): 139–151. DOI: 10.7527/S1000-6893.2019.23276 HOU Y F, LI Z P. Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 139–151. doi: 10.7527/S1000-6893.2019.23276
[34] 张一楠. 仿鲸鱼鳍风力机翼型气动力性能控制研究[D]. 北京: 中国科学院大学, 2020: 131-132. ZHANG Y N. Research on aerodynamic performance control of wind turbine airfoil with leading-edge protuberances[D]. Beijing: University of Chinese Academy of Sciences, 2020: 131-132.
[35] HRYNUK J T, BOHL D G. The effects of leading-edge tubercles on dynamic stall[J]. Journal of Fluid Mechanics, 2020, 893: A5. doi: 10.1017/jfm.2020.216
[36] LU Y, LI Z Y, CHANG X, et al. An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 292–312. doi: 10.1080/19942060.2020.1856723
[37] 吴立明, 姜怡欣, 刘小民, 等. 几种仿生翼型动态失速特性的数值分析[J]. 西安交通大学学报, 2022, 56(9): 1–9. DOI: 10.7652/xjtuxb202209001 WU L M, JIANG Y X, LIU X M, et al. Numerical analysis of dynamic stall characteristics of several bionic airfoils[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 1–9. doi: 10.7652/xjtuxb202209001
[38] LIU J, CHEN R, LOU J, et al. Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall[J]. Aerospace Science and Technology, 2023, 133: 108089. doi: 10.1016/j.ast.2022.108089
[39] 褚胡冰, 张彬乾, 陈迎春, 等. 微型涡流发生器控制增升装置流动分离研究[J]. 西北工业大学学报, 2011, 29(5): 799–805. DOI: 10.3969/j.issn.1000-2758.2011.05.026 CHU H B, ZHANG B Q, CHEN Y C, et al. Controlling flow separation of high lift transport aircraft with micro vortex generators[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 799–805. doi: 10.3969/j.issn.1000-2758.2011.05.026
[40] HEINE B, MULLENERS K, JOUBERT G, et al. Dynamic stall control by passive disturbance generators[J]. AIAA Journal, 2013, 51(9): 2086–2097. doi: 10.2514/1.J051525
[41] 赵振宙, 孟令玉, 王同光, 等. 涡流发生器对风力机翼段动态失速影响[J]. 哈尔滨工程大学学报, 2021, 42(2): 233–239. DOI: 10.11990/jheu.201908076 ZHAO Z Z, MENG L Y, WANG T G, et al. Influence of vortex generators on dynamic stall of wind turbine airfoil segment[J]. Journal of Harbin Engineering University, 2021, 42(2): 233–239. doi: 10.11990/jheu.201908076
[42] LI S, ZHANG L, XU J, et al. Experimental investigation of a pitch-oscillating wind turbine airfoil with vortex generators[J]. Journal of Renewable and Sustainable Energy, 2020, 12(6): 063304. doi: 10.1063/5.0013300
[43] 赵振宙, 孟令玉, 苏德程, 等. 涡流发生器形状对风力机翼段动态失速的影响[J]. 工程热物理学报, 2021, 42(8): 1989–1996. ZHAO Z Z, MENG L Y, SU D C, et al. Effect of vortex generator shape on dynamic stall of wind turbine airfoil[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1989–1996.
[44] DE TAVERNIER D, FERREIRA C, VIRÉ A, et al. Controlling dynamic stall using vortex generators on a wind turbine airfoil[J]. Renewable Energy, 2021, 172: 1194–1211. doi: 10.1016/j.renene.2021.03.019
[45] NAIR N J, GOZA A. Fluid-structure interaction of a bio-inspired passively deployable flap for lift enhancement[J]. Physical Review Fluids, 2022, 7(6): 064701. doi: 10.1103/physrevfluids.7.064701
[46] KAUFMANN K, GARDNER A D, RICHTER K. Numerical investigations of a back-flow flap for dynamic stall control[M]//DILLMANN A, HELLER G, KRÄMER E, et al. New results in numerical and experimental fluid mechanics IX. Cham: Springer International Publishing, 2014: 255-262. doi: 10.1007/978-3-319-03158-3_26
[47] 余海洋, 耿海超, 罗大海. 回流襟翼控制S809翼型动态失速的数值模拟研究[J]. 热能动力工程, 2020, 35(11): 127–134. DOI: 10.16146/j.cnki.rndlgc.2020.11.019 YU H Y, GENG H C, LUO D H. Numerical investigation of a back-flow flap control for S809 airfoil dynamic stall[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(11): 127–134. doi: 10.16146/j.cnki.rndlgc.2020.11.019
[48] 薛世成, 缪维跑, 李春, 等. 尾缘气动弹片对翼型动态失速特性影响研究[J]. 热能动力工程, 2021, 36(12): 142–150. DOI: 10.16146/j.cnki.rndlgc.2021.12.021 XUE S C, MIAO W P, LI C, et al. Effect of trailing edge aerodynamic flap on dynamic stall characteristics of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(12): 142–150. doi: 10.16146/j.cnki.rndlgc.2021.12.021
[49] 李根, 缪维跑, 李春, 等. 凹槽-襟翼对翼型动态失速特性影响研究[J]. 热能动力工程, 2022, 37(3): 151–159. DOI: 10.16146/j.cnki.rndlgc.2022.03.022 LI G, MIAO W P, LI C, et al. Effect of trailing edge dimple-flap on dynamic stall characteristics of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(3): 151–159. doi: 10.16146/j.cnki.rndlgc.2022.03.022
[50] OPITZ S, GARDNER A D, KAUFMANN K. Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control[J]. CEAS Aeronautical Journal, 2014, 5(3): 279–291. doi: 10.1007/s13272-014-0106-3
[51] 向斌, 缪维跑, 李春, 等. 翼型前缘的气动滑片对动态失速特性的影响分析[J]. 动力工程学报, 2020, 40(9): 765–772. XIANG B, MIAO W P, LI C, et al. Effects of leading edge aerodynamic sliding vane on dynamic stall characteristics of the airfoil[J]. Journal of Chinese Society of Power Engineering, 2020, 40(9): 765–772.
[52] SALIMIPOUR E, YAZDANI S, GHALAMBAZ M. Simulation of airfoil dynamic stall suppression with a burst control blade in a transitional flow regime[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(8): 1–12. doi: 10.1007/s40430-022-03690-w
[53] 张馨艺, 孙晓晶. 带局部运动表面翼型的动态失速特性研究[J]. 动力工程学报, 2022, 42(9): 821–828. DOI: 10.19805/j.cnki.jcspe.2022.09.005 ZHANG X Y, SUN X J. Study on dynamic stall characteristics of the airfoil with locally moving surface[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 821–828. doi: 10.19805/j.cnki.jcspe.2022.09.005
[54] WYGNANSKI I, NEWMAN B G. The effect of jet entrainment on lift and moment for a thin aerofoil with blowing[J]. Aeronautical Quarterly, 1964, 15(2): 122–150. doi: 10.1017/s0001925900003085
[55] YU Y H, LEE S, McALISTER K W, et al. Dynamic stall control for advanced rotorcraft application[J]. AIAA Journal, 1995, 33(2): 289–295. doi: 10.2514/3.12496
[56] CHEESEMAN I C, SEED A R. The application of circulation control by blowing to helicopter rotors[J]. The Aeronautical Journal, 1967, 71(679): 451–467. doi: 10.1017/s0001924000055238
[57] WEAVER D, MCALISTER K, TSO J. Suppression of dynamic stall by steady and pulsed upper-surface blowing[C]//Proc of the 16th AIAA Applied Aerodynamics Conference. 1998: 2413. doi: 10.2514/6.1998-2413
[58] SINGH C, PEAKE D J, KOKKALIS A, et al. Control of rotorcraft retreating blade stall using air-jet vortex generators[J]. Journal of Aircraft, 2006, 43(4): 1169–1176. doi: 10.2514/1.18333
[59] SEIFERT A, DARABI A, WYGANSKI I. Delay of airfoil stall by periodic excitation[J]. Journal of Aircraft, 1996, 33(4): 691–698. doi: 10.2514/3.47003
[60] NISHRI B, WYGNANSKI I. Effects of periodic excitation on turbulent flow separation from a flap[J]. AIAA Journal, 1998, 36(4): 547–556. doi: 10.2514/2.428
[61] GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of air jets for the control of compressible dynamic stall[J]. Journal of the American Helicopter Society, 2013, 58(4): 1–14. doi: 10.4050/jahs.58.042001
[62] GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of high-pressure pulsed blowing for dynamic stall control[J]. CEAS Aeronautical Journal, 2014, 5(2): 185–198. doi: 10.1007/s13272-014-0099-y
[63] MÜLLER-VAHL H F, STRANGFELD C, NAYERI C N, et al. Control of thick airfoil, deep dynamic stall using steady blowing[J]. AIAA Journal, 2014, 53(2): 277–295. doi: 10.2514/1.J053090
[64] RAMOS B L O, WOLF W R, YEH C A, et al. Active flow control for drag reduction of a plunging airfoil under deep dynamic stall[J]. Physical Review Fluids, 2019, 4(7): 074603. doi: 10.1103/physrevfluids.4.074603
[65] MATALANIS C G, MIN B Y, BOWLES P O, et al. Combustion-powered actuation for dynamic-stall suppres-sion: high-Mach simulations and low-Mach experiments[J]. AIAA Journal, 2015, 53(8): 2151–2163. doi: 10.2514/1.J053641
[66] CRITTENDEN T M, WOO G T K, GLEZER A. Combustion-powered actuation for transitory flow control[J]. AIAA Journal, 2018, 56(9): 3414–3435. doi: 10.2514/1.J056783
[67] ZHA G C, PAXTON C D. A novel airfoil circulation augment flow control method using co-flow jet[C]//Proc of the 2nd AIAA Flow Control Conference. 2004: 2208. doi: 10.2514/6.2004-2208
[68] ZHA G C, CARROLL B F, PAXTON C D, et al. High-performance airfoil using coflow jet flow control[J]. AIAA Journal, 2007, 45(8): 2087–2090. doi: 10.2514/1.20926
[69] ZHA G C, YANG Y C, REN Y, et al. Super-lift and thrusting airfoil of coflow jet actuated by micro-compressors[C]//Proc of the 2018 Flow Control Conference. 2018: 3061. doi: 10.2514/6.2018-3061
[70] LIU J Q, CHEN R Q, YOU Y C, et al. Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet[J]. Chinese Journal of Aeronautics, 2022, 35(3): 169–184. doi: 10.1016/j.cja.2021.07.041
[71] LIU J Q, CHEN R Q, SONG Q C, et al. Active flow control of helicopter rotor based on coflow jet[J]. International Journal of Aerospace Engineering, 2022, 2022: 1–19. doi: 10.1155/2022/9299470
[72] 许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J]. 航空工程进展, 2022, 13(6): 1–16. DOI: 10.16615/j.cnki.1674-8190.2022.06.01 XU H Y, MA C Y. Review of the Co-flow jet flow control method[J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 1–16. doi: 10.16615/j.cnki.1674-8190.2022.06.01
[73] 张野平, 侯银珠, 汪发亮. 飞行器绕流介质阻挡放电等离子体流动控制技术综述[J]. 航空科学技术, 2016, 27(6): 5–10. ZHANG Y P, HOU Y Z, WANG F L. Brief introduction of DBD plasma flow control in aircraft design[J]. Aeronautical Science & Technology, 2016, 27(6): 5–10.
[74] LI G Q, YI S H. Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Energy, 2020, 212: 118753. doi: 10.1016/j.energy.2020.118753
[75] LI G Q, ZHANG W G, JIANG Y B. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator[J]. Energy, 2019, 185: 90–101. doi: 10.1016/j.energy.2019.07.017
[76] ZHANG X, CUI Y D, LI H X. Acoustic streaming flow generated by surface dielectric barrier discharge in quiescent air[J]. Physics of Fluids, 2021, 33(5): 057117. doi: 10.1063/5.0049420
[77] 李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8): 123–135. DOI: 10.7527/S1000-6893.2018.22111 LI G Q, CHANG Z Q, ZHANG X, et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 123–135. doi: 10.7527/S1000-6893.2018.22111
[78] MANOJ KUMAR V, WANG C C. Active flow control of flapping airfoil using openfoam[J]. Journal of Mechanics, 2020, 36(3): 361–372. doi: 10.1017/jmech.2019.46
[79] CLIFFORD C J, SINGHAL A, SAMIMY M. A study of physics and control of a flow over an airfoil in fully-reverse condition[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1265. doi: 10.2514/6.2014-1265
[80] SOSA R, MOREAU E, TOUCHARD G, et al. Stall control at high angle of attack with periodically excited EHD actuators[C]//Proc of the 35th AIAA Plasmadynamics and Lasers Conference. 2004: 2738. doi: 10.2514/6.2004-2738
[81] POST M L, CORKE T C. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125–3135. doi: 10.2514/1.22716
[82] YANG H S, LIANG H, ZHAO G Y, et al. Experimental study on dynamic stall control based on AC-DBD actuation[J]. Plasma Science and Technology, 2021, 23(11): 115502. doi: 10.1088/2058-6272/ac1395
[83] YANG H S, ZHAO G Y, LIANG H, et al. Dynamic stall control over an airfoil by NS-DBD actuation[J]. Chinese Physics B, 2020, 29(10): 105203. doi: 10.1088/1674-1056/abb227
[84] YU H C, ZHENG J G. Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators[J]. Physics of Fluids, 2020, 32(3): 035103. doi: 10.1063/1.5142465
[85] POST M L, CORKE T C. Separation control on High angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11): 2177–2184. doi: 10.2514/1.2929
[86] GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
[87] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. DOI: 10.3321/j.issn:1000-0992.2005.02.009 LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009
[88] LIU R B, WEI W T, WAN H P, et al. Experimental study on airfoil flow separation control via an air-supplement plasma synthetic jet[J]. Advances in Aerodynamics, 2022, 4(1): 1–22. doi: 10.1186/s42774-022-00126-w
[89] 李斌斌, 姚勇, 顾蕴松, 等. 合成射流低速射流矢量偏转控制的PIV实验研究[J]. 空气动力学学报, 2018, 36(1): 22–25,30. DOI: 10.7638/kqdlxxb-2015.0194 LI B B, YAO Y, GU Y S, et al. PIV experiments on vector deflection control of lowspeed synthetic jet[J]. Acta Aerodynamica Sinica, 2018, 36(1): 22–25,30. doi: 10.7638/kqdlxxb-2015.0194
[90] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264. DOI: 10.7638/kqdlxxb-2017.0053 LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053
[91] 左伟, 顾蕴松, 程克明, 等. 斜出口合成射流控制机翼分离流实验研究[J]. 实验流体力学, 2014, 28(6): 45–50. ZUO W, GU Y S, CHENG K M, et al. An experimental investigation on separation control of an airfoil by beveled-slit-synthetic-j et-actuator[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 45–50.
[92] FENG J J, ZHU G J, LIN Y, et al. Control of dynamic stall of an airfoil by using synthetic jet technology[J]. Arabian Journal for Science and Engineering, 2020, 45(11): 9835–9841. doi: 10.1007/s13369-020-04954-0
[93] ZHAO Q J, MA Y Y, ZHAO G Q. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1818–1834. doi: 10.1016/j.cja.2017.08.011
[94] AMITAY M, SMITH D R, KIBENS V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators[J]. AIAA Journal, 2001, 39(3): 361–370. doi: 10.2514/2.1323
[95] TOUSI N M, COMA M, BERGADÀ J M, et al. Active flow control optimisation on SD7003 airfoil at pre and post-stall angles of attack using synthetic jets[J]. Applied Mathematical Modelling, 2021, 98: 435–464. doi: 10.1016/j.apm.2021.05.016
[96] MA Y Y, ZHAO Q J, CHEN X, et al. Experimental analyses of synthetic jet control effects on aerodynamic characteristics of helicopter rotor[J]. The Aeronautical Journal, 2020, 124(1274): 597–616. doi: 10.1017/aer.2019.163
[97] ZHAO G Q, ZHAO Q J. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1051–1061. doi: 10.1016/j.cja.2014.03.023
[98] DUVIGNEAU R, HAY A, VISONNEAU M. Optimal location of a synthetic jet on an airfoil for stall control[J]. Journal of Fluids Engineering, 2007, 129(7): 825–833. doi: 10.1115/1.2742729
[99] 史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究[J]. 南京航空航天大学学报, 2020, 52(2): 270–279. DOI: 10.16356/j.1005-2615.2020.02.013 SHI Y J, LI C C, XU G H. Rotor airfoil dynamic stall control based on synthetic jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270–279. doi: 10.16356/j.1005-2615.2020.02.013
[100] 胡智. 翼型失速特性与合成射流流动控制研究[D]. 上海: 上海交通大学, 2017: 57. HU Z. Study on stall characteristics of airfoil and flow control of synthetic jet[D]. Shanghai: Shanghai Jiao Tong University, 2017: 57.
[101] KIM J, PARK Y M, LEE J, et al. Numerical investigation of jet angle effect on airfoil stall control[J]. Applied Sciences, 2019, 9(15): 2960. doi: 10.3390/app9152960
[102] 林彦良, 刘艳明, 李智慧. 不同孔口构型合成射流激励器的低速翼型分离控制特性[J]. 中国科技论文, 2013, 8(11): 1173–1178. DOI: 10.3969/j.issn.2095-2783.2013.11.022 LIN Y L, LIU Y M, LI Z H. Separation control characteristics of different configurations of orifice synthetic jet actuators used in low-speed airfoil[J]. Sciencepaper Online, 2013, 8(11): 1173–1178. doi: 10.3969/j.issn.2095-2783.2013.11.022
[103] LEE B, KIM M, CHOI B, et al. Closed-loop active flow control of stall separation using synthetic jets[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013: 2925. doi: 10.2514/6.2013-2925
[104] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006: 176-177. LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Changsha: National University of Defense Technology, 2006: 176-177.
[105] WANG P L, LIU Q S, LI C, et al. Effect of trailing edge dual synthesis jets actuator on aerodynamic characteristics of a straight-bladed vertical axis wind turbine[J]. Energy, 2022, 238: 121792. doi: 10.1016/j.energy.2021.121792
[106] 戴昱, 陈德龙, 信志强. 基于流固耦合的柔性翼型动态失速特性研究[J]. 河南科学, 2022, 40(1): 25–32. DAI Y, CHEN D L, XIN Z Q. Study on dynamic stall characteristics of the flexible airfoil based on fluid-structure interaction[J]. Henan Science, 2022, 40(1): 25–32.
[107] JACOBELLIS G, GANDHI F, RICE T T, et al. Computational and experimental investigation of camber-morphing airfoils for reverse flow drag reduction on high-speed rotorcraft[J]. Journal of the American Helicopter Society, 2020, 65(1): 1–14. doi: 10.4050/jahs.65.012001
[108] RICE T T, KO D, AMITAY M. Control of reversed flow in static and dynamic conditions using camber morphing airfoils[C]//Proc of the AIAA Aviation 2019 Forum. 2019: 3213. doi: 10.2514/6.2019-3213
[109] 欧阳炎, 寇西平, 郭洪涛, 等. 带连续变弯度后缘操纵面机翼的动态失速减缓[J]. 航空工程进展, 2021, 12(6): 39–49. DOI: 10.16615/j.cnki.1674-8190.2021.06.04 OUYANG Y, KOU X P, GUO H T, et al. Alleviation of dynamic stall moments by morphing flap[J]. Advances in Aeronautical Science and Engineering, 2021, 12(6): 39–49. doi: 10.16615/j.cnki.1674-8190.2021.06.04
[110] KO D, GUHA T K, AMITAY M. Control of reverse flow over a cantilevered blade using passive camber morphing[J]. AIAA Journal, 2021, 59(12): 5310–5331. doi: 10.2514/1.j060229
[111] NELSON C, GUHA T K, AMITAY M. Control of reverse flow over a cantilevered swept blade using passive camber morphing[C]//Proc of the AIAA SCITECH 2022 Forum. 2022. doi: 10.2514/6.2022-0475
[112] MA Y Y, ZHAO Q J, ZHAO G Q. New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(4): 977–996. doi: 10.1177/0954410019893193
[113] DAI X Y, QIU Z, LI G H, et al. Research on dynamic stall active control of two-dimensional airfoil with combination of droop leading edge and trailing edge flap[J]. Aerospace Systems, 2022, 5(4): 643–653. doi: 10.1007/s42401-022-00159-5
[114] PATERAS P R. Screw propeller of helicopter flying machines: US1449129[P/OL]. 1923-03-20[2023-04-13]. https://www.freepatentsonline.com/1449129.pdf.
[115] 陆洋. 电控旋翼—一种新概念旋翼系统[J]. 航空科学技术, 2007, 18(6): 12–16. DOI: 10.3969/j.issn.1007-5453.2007.06.003 LU Y. Electrically controlled rotor—a new concept rotor system[J]. Aeronautical Science and Technology, 2007, 18(6): 12–16. doi: 10.3969/j.issn.1007-5453.2007.06.003
[116] HALL S R, ANAND R V, STRAUB F K, et al. Active flap control of the SMART rotor for vibration reduction[C]//Proc of the American Helicopter Society 65th annual forum and technology display. 2009.
[117] KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2): 407–418. doi: 10.2514/1.15597
[118] GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2007, 45(7): 1688–1694. doi: 10.2514/1.27577
[119] LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids and Structures, 2011, 27(8): 1411–1424. doi: 10.1016/j.jfluidstructs.2011.06.008
[120] 王进, 杨茂, 陈凤明. 带后缘襟翼翼型的非定常气动特性数值仿真[J]. 计算机仿真, 2011, 28(2): 88–92. DOI: 10.3969/j.issn.1006-9348.2011.02.022 WANG J, YANG M, CHEN F M. CFD simulation of unsteady aerodynamics of airfoil with trailing-edge flap[J]. Computer Simulation, 2011, 28(2): 88–92. doi: 10.3969/j.issn.1006-9348.2011.02.022
[121] 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 127–137. DOI: 10.7527/S1000-6893.2016.0220 MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 127–137. doi: 10.7527/S1000-6893.2016.0220
[122] 马奕扬, 招启军. 后缘小翼对旋翼气动特性的控制机理及参数分析[J]. 航空学报, 2018, 39(5): 14–27. DOI: 10.7527/S1000-6893.2018.21671 MA Y Y, ZHAO Q J. Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 14–27. doi: 10.7527/S1000-6893.2018.21671
[123] 胡志远, 徐国华, 史勇杰. 基于CFD方法的主动襟翼控制旋翼翼型涡特性研究[J]. 南京航空航天大学学报, 2018, 50(2): 167–172. DOI: 10.16356/j.1005-2615.2018.02.003 HU Z Y, XU G H, SHI Y J. Study of AFC rotor airfoil vortex characteristics based on CFD method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 167–172. doi: 10.16356/j.1005-2615.2018.02.003
[124] BARRIO J F, MERTENS C, RAGNI D, et al. Pressure based active load control of a blade in dynamic stall conditions[J]. Journal of Physics: Conference Series, 2020, 1618(2): 022003. doi: 10.1088/1742-6596/1618/2/022003
[125] SAMARA F, JOHNSON D A. Deep dynamic stall and active aerodynamic modification on a S833 airfoil using pitching trailing edge flap[J]. Wind Engineering, 2020, 00(0): 1–20. doi: 10.1177/0309524X209388
[126] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5): 1028–1035. DOI: 10.7527/S1000-6893.2013.0112 LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1028–1035. doi: 10.7527/S1000-6893.2013.0112
[127] KAN Z, LI D C, XIANG J W, et al. Delaying stall of morphing wing by periodic trailing-edge deflection[J]. Chinese Journal of Aeronautics, 2020, 33(2): 493–500. doi: 10.1016/j.cja.2019.09.028
[128] WOODS B K S, FRISWELL M I. Preliminary investigation of a fishbone active camber concept[C]//Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2013: 555-563. doi: 10.1115/SMASIS2012-8058
[129] KUMAR S, KOMP D, HAJEK M, et al. Integrated rotor performance improvement and vibration reduction using active camber morphing[C]//ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2019. doi: 10.1115/SMASIS2019-5588
[130] RIVERO A E, FOURNIER S, MANOLESOS M, et al. Experimental aerodynamic comparison of active camber morphing and trailing-edge flaps[J]. AIAA Journal, 2021, 59(7): 2627–2640. doi: 10.2514/1.j059606
[131] POHL J E, RADESPIEL R, HERRMANN B, et al. Gust mitigation through closed-loop control. I. Trailing-edge flap response[J]. Physical Review Fluids, 2022, 7(2): 024705. doi: 10.1103/physrevfluids.7.024705