Research on ultra low dew point in-situ on-line measurement technology for cryogenic wind tunnel
-
摘要: 面向低温风洞极低露点原位在线测量需求,开展了基于激光吸收光谱的宽温域、高精度、极低露点原位在线测量技术研究。分析了激光吸收光谱露点测量技术原理,开展了吸收谱线选型、光谱参数标定和光谱信号处理方法研究,测量了低温平台原位在线露点和0.3 m低温引导风洞露点,并与冷镜式露点仪比较了测量精度。研究结果表明:激光吸收光谱露点测量技术可以实现宽温域、高精度、原位在线露点测量,露点测量范围–100~30 ℃,测量误差小于1 ℃,测量时间低于1 s,可满足低温风洞极低露点测量需求。Abstract: To achieve wide temperature domain, high precision and ultra low dew point in-situ on-line measurement in the cryogenic wind tunnel, a technology based on the laser absorption spectrum is developed. In the method, the principles of laser absorption spectroscopic technology for dew point measurement are analyzed firstly. Then the absorption spectroscopic selection, spectral parameter calibration and spectral signal processing are provided. The experiments are carried out on the low temperature platform and in the 0.3 m cryogenic wind tunnel, which are compared to the chilled-mirror dew-point hygrometer measurement. The experimental results show that the developed technology can achieve wide temperature domain, high precision and in-situ on-line dew point measurement. The measurement range is from –100 ℃ to 30 ℃, the error is less than 1 ℃, and the time is less than 1 s. It can be used for ultra low dew point in-situ on-line measurement in the cryogenic wind tunnel.
-
-
表 1 选择光谱谱线参数和对应激光器
Table 1 Selection of spectral line parameters and corresponding lasers
激光器 吸收谱线/
(cm−1)线强参数/
(cm−1·molecule−1)露点测量
覆盖范围/ ℃Laser 2–2626 nm 3807 1.585×10−19 −100~−40 Laser 3–1854 nm 5394 2.580×10−20 −95~−25 Laser 1–1383 nm 7223 6.374×10−22 −60~30 7226 8.714×10−21 7228 1.848×10−21 表 2 TDLAS与冷镜式露点仪测量(计量)对比
Table 2 Measurement results of TDLAS and cold mirror dew point instrument
设定露点/℃ TDLAS测量/℃ MBW373测量/℃ 偏差/℃ −100 −99.10 −100.00 0.90 −90 −91.10 −91.90 0.80 −80 −79.39 −79.88 0.49 −70 −69.55 −69.85 0.30 −60 −59.15 −59.59 0.44 −50 −50.35 −50.70 0.35 −40 −39.70 −40.10 0.40 −30 −29.93 −30.10 0.17 −20 −19.83 −19.97 0.14 −10 −10.75 −10.66 −0.09 0 −0.75 −0.78 0.03 10 10.36 9.98 0.38 20 20.54 20.19 0.45 30 31.10 30.79 0.31 -
[1] 廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 1–6, 20. DOI: 10.11729/syltlx20130102 LIAO D X, HUANG Z L, CHEN Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1–6, 20. doi: 10.11729/syltlx20130102
[2] 黄知龙, 周平, 顾正华, 等. 大型低温风洞中的测控技术设计需求[C]//空气动力学会测控技术第六届六次测控学术交流会论文集. 2015: 168-171. [3] 李萍, 王晓蕾, 林明峰, 等. 冷镜式露点仪研究[J]. 计测技术, 2010, 30(S1): 39–41. [4] 马延平, 陈振林, 蒋志忠, 等. 影响冷镜式露点仪测量准确度因素分析及解决方法研究[J]. 仪表技术与传感器, 2006(9): 17–18. DOI: 10.3969/j.issn.1002-1841.2006.09.008 MA Y P, CHEN Z L, JIANG Z Z, et al. Analysis on measurement accuracy actors of dew-point hygrometer[J]. Instrument Technique and Sensor, 2006(9): 17–18. doi: 10.3969/j.issn.1002-1841.2006.09.008
[5] 姚路, 刘文清, 阚瑞峰, 等. 小型化TDLAS发动机测温系统的研究及进展[J]. 实验流体力学, 2015, 29(1): 71–76. DOI: 10.11729/syltlx20140025 YAO L, LIU W Q, KAN R F, et al. Research and develop-ment of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 71–76. doi: 10.11729/syltlx20140025
[6] 胡尚炜, 殷可为, 涂晓波, 等. 基于中红外吸收光谱技术测量高温流场CO浓度研究[J]. 实验流体力学, 2021, 35(1): 60–66. DOI: 10.11729/syltlx20190126 HU S W, YIN K W, TU X B, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126
[7] 陶波, 王晟, 胡志云, 等. TDLAS 技术二次谐波法测量发动机温度[J]. 实验流体力学, 2015, 29(2): 68–72. DOI: 10.11729/syltlx20140062 TAO B, WANG S, HU Z Y, et al. Engine temperature measurement based on TDLAS second harmonic technique[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 68–72. doi: 10.11729/syltlx20140062
[8] 卢伟业, 朱晓睿, 李越胜, 等. TDLAS直接吸收法和波长调制法在线测量CO2的比较[J]. 红外与激光工程, 2018, 47(7): 0717002. DOI: 10.3788/IRLA201847.0717002 LU W Y, ZHU X R, LI Y S, et al. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering, 2018, 47(7): 0717002. doi: 10.3788/IRLA201847.0717002
[9] WEI Y B, CHANG J, LIAN J, et al. Study of a distributed feedback diode laser based hygrometer combined Herriot-gas cell and waterless optical components[J]. Photonic Sensors, 2016, 6(3): 214–220. doi: 10.1007/s13320-016-0320-1
[10] MALLORY W T Jr. Large scale wind tunnel humidity sensor using laser diode absorption spectroscopy[D]. Tennessee: Vanderbilt University, 2017.
[11] THORNBERRY T D, ROLLINS A W, GAO R S, et al. A two-channel, tunable diode laser-based hygrometer for mea-surement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere[J]. Atmospheric Measurement Techniques, 2015, 8(1): 211–224. doi: 10.5194/amt-8-211-2015
[12] BUCHHOLZ B, KÜHNREICH B, SMIT H G J, et al. Validation of an extractive, airborne, compact TDL spectro-meter for atmospheric humidity sensing by blind intercom-parison[J]. Applied Physics B, 2013, 110(2): 249–262. doi: 10.1007/s00340-012-5143-1
[13] BUCHHOLZ B, AFCHINE A, KLEIN A, et al. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data[J]. Atmospheric Measurement Techniques, 2017, 10(1): 35–57. doi: 10.5194/amt-10-35-2017
[14] BUCHHOLZ B, KALLWEIT S, EBERT V. SEALDH-II-an autonomous, holistically controlled, first principles TDLAS hygrometer for field and airborne applications: design-setup-accuracy/stability stress test[J]. Sensors(Basel), 2016, 17(1): 68. doi: 10.3390/s17010068
[15] SARGENT M R, SAYRES D S, SMITH J B, et al. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper tropos-phere and lower stratosphere[J]. The Review of Scientific Instruments, 2013, 84(7): 074102. doi: 10.1063/1.4815828
[16] MURPHY D M, KOOP T. Review of the vapour pressures of ice and supercooled water for atmospheric applications[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(608): 1539–1565. doi: 10.1256/qj.04.94
[17] ROTHMAN L S, GORDON I E, BABIKOV Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4–50. doi: 10.1016/j.jqsrt.2013.07.002
[18] 聂伟, 阚瑞峰, 许振宇, 等. 基于TDLAS技术的水汽低温吸收光谱参数测量[J]. 物理学报, 2017, 66(20): 204204. DOI: 10.7498/aps.66.204204 NIE W, KAN R F, XU Z Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204