Multi-parameter measurement of aerodynamic load via flexible sensing skin
-
摘要: 飞行器表面气动参数特征是飞行器结构设计和安全评估的重要依据,而风洞试验作为最有效的测试手段,通常面临破坏结构、测量物理量单一等问题。提出曲面共形的柔性智能蒙皮测量技术,集成了多种超薄柔性传感器阵列,通过剪纸–拼接的完全共形方式集成到飞行器结构表面,在不改变结构表面形貌的情况下同步实时测量壁面静态压力、脉动压力、温度、壁面剪应力等多种气动参数。在直流式风洞、射流平台和FL–9风洞中对NACA0012机翼和飞行器尾翼进行了变风速和变迎角试验,分析风洞试验中采集获得的多种气动参数,验证了该系统的可用性,为风洞试验中柔性智能蒙皮多参量同步测量气动特性研究提供参考。Abstract: Aerodynamic characteristics of aircraft are critical for the design and security evaluation of aircraft structures. Wind tunnel test is the most effective experimental method, which is faced with the problems of structure damage and fewer parameters measurement. Herein, we propose a conformal measurement technique based on flexible sensing skin integrated with variety of ultra-thin flexible sensors, that are attached on surface of aircrafts consistently by kirigami assembly strategy. The sensing skin can simultaneously obtain multiple aerodynamic parameters like static pressure, pulsating pressure, temperature and wall shear force, without changing the surface morphology of the structure. Experiments on NACA0012 wing and aircraft tail under variable wind speed and variable angle of attack are carried out in the direct wind tunnel, jet platform and FL–9 wind tunnel. The characteristics of parameters collected in the wind tunnel are analyzed, which proves the availability of the system, paving a way for simultaneous measurement of various aerodynamic characteristics by flexible sensing skin in wind tunnel experiments.
-
-
表 1 传感器性能参数
Table 1 Performance parameters of sensors
传感器类型 敏感区尺寸 厚度/μm 响应时间/ms 采样频率/Hz 分辨率 量程 动压 ϕ1.5 mm 25 5 500 10 — 静压 ϕ3 mm 60 100 1000 5 Pa 0~6 kPa 热膜 1 mm×0.08 mm 20 2 1000 — — 温度 1.5 mm×3.5 mm 10 100 2 0.5 ℃ –20~120 ℃ -
[1] TABRIZIAN A,TATAR M,MASDARI M,et al. An experimental study on boundary layer transition detection over a pitching supercritical airfoil using hot-film sensors[J]. International Journal of Heat and Fluid Flow,2020,86:108743. doi: 10.1016/j.ijheatfluidflow.2020.108743
[2] RUDMIN D,BENAISSA A,POIREL D. Detection of laminar flow separation and transition on a NACA-0012 airfoil using surface hot-films[J]. Journal of Fluids Engineering,2013,135(10):101104. doi: 10.1115/1.4024807
[3] 柴聪聪,易贤,郭磊,等. 基于BP神经网络的冰形特征参数预测[J]. 实验流体力学,2021,35(3):16-21. DOI: 10.11729/syltlx20200016 CHAI C C,YI X,GUO L,et al. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):16-21. doi: 10.11729/syltlx20200016
[4] 陈舒越,郭向东,王梓旭,等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学,2021,35(3):22-29. DOI: 10.11729/syltlx20200104 CHEN S Y,GUO X D,WANG Z X,et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):22-29. doi: 10.11729/syltlx20200104
[5] 高文涛,张武林,寇宝智. T型尾翼飞机抖振试飞研究[J]. 实验流体力学,2020,34(6):45-51. DOI: 10.11729/syltlx20200040 GAO W T,ZHANG W L,KOU B Z. Study on buffet flight test of aircraft with T-tail[J]. Journal of Experiments in Fluid Mechanics,2020,34(6):45-51. doi: 10.11729/syltlx20200040
[6] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. DOI: 10.11729/syltlx20190076 YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076
[7] MO Z W,FU H Z,HO Y S. Global development and trend of wind tunnel research from 1991 to 2014: a bibliometric analysis[J]. Environmental Science and Pollution Research International,2018,25(30):30257-30270. doi: 10.1007/s11356-018-3019-6
[8] HUANG Y A,ZHU C,XIONG W N,et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft[J]. Science China Technological Sciences,2022,65(1):1-29. doi: 10.1007/s11431-020-1793-0
[9] KUESTER M S, BORGOLTZ A, DEVENPORT W J. Pressure tap effects on the lift measurement of an airfoil section[C]//32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.2016: 3654. doi: 10.2514/6.2016-3654
[10] 汪玉,邱雷,黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术,2020,63(15):60-69,80. DOI: 10.16080/j.issn1671-833x.2020.15.060 WANG Y,QIU L,HUANG Y A. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology,2020,63(15):60-69,80. doi: 10.16080/j.issn1671-833x.2020.15.060
[11] LI X T,LIU X,LIU Y Z,et al. Experimental study of near-wall underexpanded jet impingement on a flat plate using temperature-insensitive semi-transparent pressure-sensitive paint[J]. Experiments in Fluids,2020,61(11):1-17. doi: 10.1007/s00348-020-03068-5
[12] 霍俊杰, 易仕和, 牛海波, 等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究[J/OL]. 气体物理, [2022-03-17]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=QTWL20210420000&uniplatform=NZKPT&v=5V9HsVG-07ysOtbqFkzbUOBCzSI1rjf0gx8QsqySKs7E_OEB73Fp1Na-RDwblyLh. doi: 10.19527/j.cnki.2096-1642.0906. [13] ZHU C,GUO D L,YE D,et al. Flexible PZT-integrated, bilateral sensors via transfer-free laser lift-off for multimodal measurements[J]. ACS Applied Materials & Interfaces,2020,12(33):37354-37362. doi: 10.1021/acsami.0c10083
[14] CHEN F R,HOU C,JIANG S,et al. Mechanically-compensated bending-strain measurement of multilayered paper-like electronics via surface-mounted sensor[J]. Composite Structures,2021,277:114652. doi: 10.1016/j.compstruct.2021.114652
[15] DI LUCA M,MINTCHEV S,SU Y X,et al. A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones[J]. Science Robotics,2020,5(38):eaay8533. doi: 10.1126/scirobotics.aay8533
[16] 杨华,黄永安. 大型风洞全场智能感知的研究进展[J]. 中国科学基金,2017,31(5):450-460. YANG H,HUANG Y A. Advance in the full-field intelligent sensing for large-scale wind tunnels[J]. Bulletin of National Natural Science Foundation of China,2017,31(5):450-460.
[17] 赵建国,马炳和,邓进军. 用于壁面剪应力测量的柔性热敏传感器阵列[J]. 微纳电子技术,2009,46(7):414-418. DOI: 10.3969/j.issn.1671-4776.2009.07.006 ZHAO J G,MA B H,DENG J J. Flexible thermal sensor array for wall shear stress measurements[J]. Micronanoelectronic Technology,2009,46(7):414-418. doi: 10.3969/j.issn.1671-4776.2009.07.006
[18] SUN B Y,WANG P B,LUO J,et al. A flexible hot-film sensor array for underwater shear stress and transition measurement[J]. Sensors (Basel, Switzerland),2018,18(10):3469. doi: 10.3390/s18103469
[19] XIONG W N,GUO D L,YANG Z X,et al. Conformable, programmable and step-linear sensor array for large-range wind pressure measurement on curved surface[J]. Science China Technological Sciences,2020,63(10):2073-2081. doi: 10.1007/s11431-020-1642-4
[20] BIAN J,CHEN F,YANG B,et al. Laser-induced interfacial spallation for controllable and versatile delamination of flexible electronics[J]. ACS Applied Materials & Interfaces,2020,12(48):54230-54240. doi: 10.1021/acsami.0c18951
[21] 梁撑刚,张琳,刘华伟. 翼型动态实验中脉动压力信号处理方法研究[J]. 弹箭与制导学报,2021,41(2):111-113,119. DOI: 10.15892/j.cnki.djzdxb.2021.02.023 LIANG C G,ZHANG L,LIU H W. Research on fluctuating pressure signal processing in airfoil dynamic experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2021,41(2):111-113,119. doi: 10.15892/j.cnki.djzdxb.2021.02.023
[22] POELS A, RUDMIN D, BENAISSA A, et al. Localization of flow separation and transition over a pitching NACA 0012 airfoil at transitional reynolds numbers using hot-films[J]. Journal of Fluids engineering-transactions of the asme, 2015, 137(12). doi: 10.1115/1.4031008