飞行器表面气动载荷的柔性智能蒙皮多参量测量

郭栋梁, 侯超, 朱臣, 熊文楠, 陈爽, 许晓斌, 杨华, 黄永安

郭栋梁,侯超,朱臣,等. 飞行器表面气动载荷的柔性智能蒙皮多参量测量[J]. 实验流体力学,2022,36(2):146-154. DOI: 10.11729/syltlx20210115
引用本文: 郭栋梁,侯超,朱臣,等. 飞行器表面气动载荷的柔性智能蒙皮多参量测量[J]. 实验流体力学,2022,36(2):146-154. DOI: 10.11729/syltlx20210115
GUO D L,HOU C,ZHU C,et al. Multi-parameter measurement of aerodynamic load via flexible sensing skin[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):146-154.. DOI: 10.11729/syltlx20210115
Citation: GUO D L,HOU C,ZHU C,et al. Multi-parameter measurement of aerodynamic load via flexible sensing skin[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):146-154.. DOI: 10.11729/syltlx20210115

飞行器表面气动载荷的柔性智能蒙皮多参量测量

基金项目: 国家重点研发计划资助(2020YFA0405700);国家自然科学基金(51635007,51925503);中央高校基本科研业务费专项资金(2019kfyRCPY017)
详细信息
    作者简介:

    郭栋梁: (1992—),男,河北邢台人,博士研究生。研究方向:飞行器智能蒙皮技术,柔性传感技术,风洞测试技术。通信地址:湖北省武汉市洪山区珞喻路1037号华中科技大学(430074)。E-mail:78312889@qq.com

    侯超: (1996—),男,四川南充人,博士研究生。研究方向:飞行器智能蒙皮技术,柔性传感技术,形状重构技术。通信地址:湖北省武汉市洪山区珞喻路1037号华中科技大学(430074)。E-mail:809762746@qq.com

    通讯作者:

    黄永安: E-mail:yahuang@hust.edu.cn

  • 中图分类号: TP212.9;V211.753

Multi-parameter measurement of aerodynamic load via flexible sensing skin

  • 摘要: 飞行器表面气动参数特征是飞行器结构设计和安全评估的重要依据,而风洞试验作为最有效的测试手段,通常面临破坏结构、测量物理量单一等问题。提出曲面共形的柔性智能蒙皮测量技术,集成了多种超薄柔性传感器阵列,通过剪纸–拼接的完全共形方式集成到飞行器结构表面,在不改变结构表面形貌的情况下同步实时测量壁面静态压力、脉动压力、温度、壁面剪应力等多种气动参数。在直流式风洞、射流平台和FL–9风洞中对NACA0012机翼和飞行器尾翼进行了变风速和变迎角试验,分析风洞试验中采集获得的多种气动参数,验证了该系统的可用性,为风洞试验中柔性智能蒙皮多参量同步测量气动特性研究提供参考。
    Abstract: Aerodynamic characteristics of aircraft are critical for the design and security evaluation of aircraft structures. Wind tunnel test is the most effective experimental method, which is faced with the problems of structure damage and fewer parameters measurement. Herein, we propose a conformal measurement technique based on flexible sensing skin integrated with variety of ultra-thin flexible sensors, that are attached on surface of aircrafts consistently by kirigami assembly strategy. The sensing skin can simultaneously obtain multiple aerodynamic parameters like static pressure, pulsating pressure, temperature and wall shear force, without changing the surface morphology of the structure. Experiments on NACA0012 wing and aircraft tail under variable wind speed and variable angle of attack are carried out in the direct wind tunnel, jet platform and FL–9 wind tunnel. The characteristics of parameters collected in the wind tunnel are analyzed, which proves the availability of the system, paving a way for simultaneous measurement of various aerodynamic characteristics by flexible sensing skin in wind tunnel experiments.
  • 图  1   柔性智能蒙皮与感知

    Fig.  1   Flexible sensing skin and flow field perception

    图  2   柔性智能蒙皮系统

    Fig.  2   System of flexible sensing skin

    图  3   柔性传感器及测量原理示意图

    Fig.  3   Flexible sensors and schematic diagrams

    图  4   柔性智能蒙皮系统风洞试验

    Fig.  4   Wind tunnel experiment of sensing skin system

    图  5   NACA0012机翼小型风洞试验脉动压力结果

    Fig.  5   Results of pulsating pressure in wind tunnel test with different angles of attack

    图  6   静态差压标定和升力系数随NACA0012机翼迎角变化

    Fig.  6   Results of static pressure in wind tunnel test with different angles of attack

    图  7   柔性温度传感器试验结果图

    Fig.  7   Calibration of flexible temperature sensor and wind tunnel test results

    图  8   热膜传感器在尾翼不同位置的响应

    Fig.  8   Voltage signal vibration of hot film sensors in aircraft tail

    图  9   飞行器颤振信号联合分析

    Fig.  9   Analysis of multi-signals for aircraft flutter test

    表  1   传感器性能参数

    Table  1   Performance parameters of sensors

    传感器类型敏感区尺寸厚度/μm响应时间/ms采样频率/Hz分辨率量程
    动压ϕ1.5 mm25550010
    静压ϕ3 mm6010010005 Pa0~6 kPa
    热膜1 mm×0.08 mm2021000
    温度1.5 mm×3.5 mm1010020.5 ℃–20~120 ℃
    下载: 导出CSV
  • [1]

    TABRIZIAN A,TATAR M,MASDARI M,et al. An experimental study on boundary layer transition detection over a pitching supercritical airfoil using hot-film sensors[J]. International Journal of Heat and Fluid Flow,2020,86:108743. doi: 10.1016/j.ijheatfluidflow.2020.108743

    [2]

    RUDMIN D,BENAISSA A,POIREL D. Detection of laminar flow separation and transition on a NACA-0012 airfoil using surface hot-films[J]. Journal of Fluids Engineering,2013,135(10):101104. doi: 10.1115/1.4024807

    [3] 柴聪聪,易贤,郭磊,等. 基于BP神经网络的冰形特征参数预测[J]. 实验流体力学,2021,35(3):16-21. DOI: 10.11729/syltlx20200016

    CHAI C C,YI X,GUO L,et al. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):16-21. doi: 10.11729/syltlx20200016

    [4] 陈舒越,郭向东,王梓旭,等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学,2021,35(3):22-29. DOI: 10.11729/syltlx20200104

    CHEN S Y,GUO X D,WANG Z X,et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):22-29. doi: 10.11729/syltlx20200104

    [5] 高文涛,张武林,寇宝智. T型尾翼飞机抖振试飞研究[J]. 实验流体力学,2020,34(6):45-51. DOI: 10.11729/syltlx20200040

    GAO W T,ZHANG W L,KOU B Z. Study on buffet flight test of aircraft with T-tail[J]. Journal of Experiments in Fluid Mechanics,2020,34(6):45-51. doi: 10.11729/syltlx20200040

    [6] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. DOI: 10.11729/syltlx20190076

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076

    [7]

    MO Z W,FU H Z,HO Y S. Global development and trend of wind tunnel research from 1991 to 2014: a bibliometric analysis[J]. Environmental Science and Pollution Research International,2018,25(30):30257-30270. doi: 10.1007/s11356-018-3019-6

    [8]

    HUANG Y A,ZHU C,XIONG W N,et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft[J]. Science China Technological Sciences,2022,65(1):1-29. doi: 10.1007/s11431-020-1793-0

    [9]

    KUESTER M S, BORGOLTZ A, DEVENPORT W J. Pressure tap effects on the lift measurement of an airfoil section[C]//32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.2016: 3654. doi: 10.2514/6.2016-3654

    [10] 汪玉,邱雷,黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术,2020,63(15):60-69,80. DOI: 10.16080/j.issn1671-833x.2020.15.060

    WANG Y,QIU L,HUANG Y A. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology,2020,63(15):60-69,80. doi: 10.16080/j.issn1671-833x.2020.15.060

    [11]

    LI X T,LIU X,LIU Y Z,et al. Experimental study of near-wall underexpanded jet impingement on a flat plate using temperature-insensitive semi-transparent pressure-sensitive paint[J]. Experiments in Fluids,2020,61(11):1-17. doi: 10.1007/s00348-020-03068-5

    [12] 霍俊杰, 易仕和, 牛海波, 等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究[J/OL]. 气体物理, [2022-03-17]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=QTWL20210420000&uniplatform=NZKPT&v=5V9HsVG-07ysOtbqFkzbUOBCzSI1rjf0gx8QsqySKs7E_OEB73Fp1Na-RDwblyLh. doi: 10.19527/j.cnki.2096-1642.0906.
    [13]

    ZHU C,GUO D L,YE D,et al. Flexible PZT-integrated, bilateral sensors via transfer-free laser lift-off for multimodal measurements[J]. ACS Applied Materials & Interfaces,2020,12(33):37354-37362. doi: 10.1021/acsami.0c10083

    [14]

    CHEN F R,HOU C,JIANG S,et al. Mechanically-compensated bending-strain measurement of multilayered paper-like electronics via surface-mounted sensor[J]. Composite Structures,2021,277:114652. doi: 10.1016/j.compstruct.2021.114652

    [15]

    DI LUCA M,MINTCHEV S,SU Y X,et al. A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones[J]. Science Robotics,2020,5(38):eaay8533. doi: 10.1126/scirobotics.aay8533

    [16] 杨华,黄永安. 大型风洞全场智能感知的研究进展[J]. 中国科学基金,2017,31(5):450-460.

    YANG H,HUANG Y A. Advance in the full-field intelligent sensing for large-scale wind tunnels[J]. Bulletin of National Natural Science Foundation of China,2017,31(5):450-460.

    [17] 赵建国,马炳和,邓进军. 用于壁面剪应力测量的柔性热敏传感器阵列[J]. 微纳电子技术,2009,46(7):414-418. DOI: 10.3969/j.issn.1671-4776.2009.07.006

    ZHAO J G,MA B H,DENG J J. Flexible thermal sensor array for wall shear stress measurements[J]. Micronanoelectronic Technology,2009,46(7):414-418. doi: 10.3969/j.issn.1671-4776.2009.07.006

    [18]

    SUN B Y,WANG P B,LUO J,et al. A flexible hot-film sensor array for underwater shear stress and transition measurement[J]. Sensors (Basel, Switzerland),2018,18(10):3469. doi: 10.3390/s18103469

    [19]

    XIONG W N,GUO D L,YANG Z X,et al. Conformable, programmable and step-linear sensor array for large-range wind pressure measurement on curved surface[J]. Science China Technological Sciences,2020,63(10):2073-2081. doi: 10.1007/s11431-020-1642-4

    [20]

    BIAN J,CHEN F,YANG B,et al. Laser-induced interfacial spallation for controllable and versatile delamination of flexible electronics[J]. ACS Applied Materials & Interfaces,2020,12(48):54230-54240. doi: 10.1021/acsami.0c18951

    [21] 梁撑刚,张琳,刘华伟. 翼型动态实验中脉动压力信号处理方法研究[J]. 弹箭与制导学报,2021,41(2):111-113,119. DOI: 10.15892/j.cnki.djzdxb.2021.02.023

    LIANG C G,ZHANG L,LIU H W. Research on fluctuating pressure signal processing in airfoil dynamic experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2021,41(2):111-113,119. doi: 10.15892/j.cnki.djzdxb.2021.02.023

    [22]

    POELS A, RUDMIN D, BENAISSA A, et al. Localization of flow separation and transition over a pitching NACA 0012 airfoil at transitional reynolds numbers using hot-films[J]. Journal of Fluids engineering-transactions of the asme, 2015, 137(12). doi: 10.1115/1.4031008

图(9)  /  表(1)
计量
  • 文章访问数:  2934
  • HTML全文浏览量:  413
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 修回日期:  2022-03-03
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回
    x 关闭 永久关闭