层析粒子图像测速技术研究进展

李晓辉, 王宏伟, 黄湛, 赵俊波

李晓辉, 王宏伟, 黄湛, 赵俊波. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86-96. DOI: 10.11729/syltlx20190160
引用本文: 李晓辉, 王宏伟, 黄湛, 赵俊波. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86-96. DOI: 10.11729/syltlx20190160
LI Xiaohui, WANG Hongwei, HUANG Zhan, ZHAO Junbo. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86-96. DOI: 10.11729/syltlx20190160
Citation: LI Xiaohui, WANG Hongwei, HUANG Zhan, ZHAO Junbo. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86-96. DOI: 10.11729/syltlx20190160

层析粒子图像测速技术研究进展

详细信息
    作者简介:

    李晓辉(1990-), 男, 安徽宿州人, 硕士, 工程师。研究方向: 流动显示及流动控制技术。通信地址: 北京市丰台区云岗西路17号(100074)。E-mail: lx1991h@163.com

    通讯作者:

    黄湛, E-mail: xfd_huangzh@sina.com

  • 中图分类号: V211.7

Research advances of tomographic particle image velocimetry

  • 摘要: 层析粒子图像测速技术(Tomographic Particle Image Velocimetry,Tomo-PIV)作为一种瞬时的三维流场速度测量技术,能够为具有强非定常性及强三维空间性的复杂流动提供详细的数据支撑。对近年来该技术在国内外的发展及应用进行了全面的综述。首先介绍了层析粒子图像测速技术的工作原理和技术特点,进而探讨了当前层析粒子图像测速的研究现状,重点从相机布局、示踪粒子密度、标定映射函数及三维重构算法对重构精度的影响等方面进行了阐述,而后通过国内外关于层析粒子图像测速技术的典型应用,展示了该技术在非定常三维流动及工程应用中的优势。最后,对层析粒子图像测速技术的应用前景及发展趋势进行了展望。
    Abstract: Tomographic Particle Image Velocimetry (Tomo-PIV) is an instantaneous three-dimensional velocity measurement technology which can provide detailed data support for complex flows with strong unsteady characteristics. A general review of the development and application of the technology at home and abroad is presented. The principle and characteristics of tomographic particle image velocimetry are introduced, and the current research situation is discussed, including especially the camera layout, particle density, calibration mapping function and 3D reconstruction algorithm. Then the typical application of Tomographic Particle Image Velocimetry is introduced, showing its advantages in the unsteady three-dimensional flow measurement and engineering applications. Finally, the application prospect and development trend of tomographic particle image velocimetry are discussed.
  • 目前世界上在用的大尺寸航空声学风洞有20余座,分布在美国、德国、意大利、日本和韩国等多个国家[1-4]。5.5 m × 4.0 m航空声学风洞背景噪声和湍流度指标均达到世界先进水平[5-6]。该风洞闭口试验段用于容纳试验模型开展闭口试验,是风洞回路的关键部段。本文主要针对该航空声学风洞闭口试验段总体结构方案、定位与锁紧、提升机构、可更换下壁板和开度可调侧壁板等进行了详细研究,并对加工和装配过程中的加工变形控制技术和装配精度保证等技术进行了介绍。

    1)试验段尺寸为5.5 m(宽) × 4 m(高) × 14 m(长)。

    2)试验段为闭口,风速为8~130 m/s。

    3)闭口试验段模型区中心湍流度 ≤ 0.05%。

    4)轴向静压梯度设计指标L|dCp/dx| ≤ 0.003 (轴向静压梯度dCp/dx指试验段静压沿中心轴向变化,L为模型区长度)。

    5)满足风洞开、闭口试验状态快速切换要求。

    6)满足腹撑、尾撑、半模、地效试验活动地板(单带)等试验配套需求。

    根据闭口试验段研制指标和功能需求,将闭口试验段设计为可移动部段,放弃了传统的轨道运输方案(轨道运输方案会使消声室地面轨道错综复杂,导致换向和消声室大门密封困难及试验效率低等问题)。采用气浮驱动技术,以满足开口和闭口试验工况快速切换[8-9]要求。气垫运输路径采用压光水泥地面(水平度 ≤ 0.5%,平面度 ≤ 0.5%),在闭口试验段长期停放位置预埋钢板。

    为降低该风洞在开口状态下的射流噪声,采用不同形式的声学喷口。不同形式的声学喷口具有不同的出口形状,由开口试验状态切换到闭口试验状态时,若直接将闭口试验段入口与声学喷口出口对接,对接处的过渡与密封处理极其困难,将影响低湍流度试验性能指标。因此,在方案设计时,在闭口试验段前部向上游增加了声学喷口长度,切换试验状态时,将声学喷口拆除,闭口试验段入口直接与收缩段出口对接。

    考虑到风洞模型、尾撑变角度机构重量和尺寸较大,为方便其进出闭口试验段,在试验段顶部设置进出通道,并在试验段上框架设计了电动执行的提升平移机构。采用带行走机构、可沿导轨轴向移动的可更换下壁板,能够兼顾常规试验与地效试验等特种试验,使闭口试验段具有高适应性的功能扩展能力。侧壁板采用“铰链+推杆”的方案实现扩散角可调,为优化闭口试验段轴向静压梯度提供了技术支撑。基于上述功能需求和总体方案,结合试验段内表面高精度要求、大跨距支腿对试验段的高刚性要求,以及试验段装配精度要求[10-13],对闭口试验段采用了“框架+壁板”的结构形式。

    闭口试验段主要包括支腿、框架、壁板、上下转盘和提升平移机构等,如图1所示。闭口试验段外形尺寸16.15 m(长) × 8.1 m(宽) × 12.15 m(高),中心轴线标高8 m,总重187 t。试验段整体采用框架结构,选取刚度较大的工字钢及箱型梁作为主要承力构件。壁板装配在框架上,形成15 m(长) × 5.5 m(宽) × 4 m(高)的气流通道;下壁板为可更换结构形式,通过轮式机构驱动,可顺利进出试验段。试验段共有4组支腿,用于支撑上部洞体结构,支腿下部均为π形结构,用以安装气垫模块。上、下转盘分别安装于上、下壁板,上、下转盘同轴且可随壁板移动。提升平移机构位于试验段顶部,可将上、中壁板提起,并平移到试验段后方。

    图  1  闭口试验段
    Fig.  1  The solid wall test section

    为了保证闭口试验段各精度指标的实现和运行安全,采用有限元方法对其结构强度、刚度及模态进行了分析[14]

    重点针对闭口试验段框架静力学和动力学进行分析。在对应支撑处施加4个壁板的重力、气动载荷、提升装置及转盘等载荷后,计算得到主体结构等效应力 < 100 MPa,应力集中处最大应力为131 MPa(图2),可以通过工艺倒角加以改善。最大变形为2.79 mm(位于框架上横梁处,图3),满足强度设计要求(安全裕度≥ 1.5)和刚度要求(≤ 3 mm)。前六阶模态振型及固有频率如图4所示。试验段气流平稳,压力脉动极小,不会激发闭口试验段的共振。在实际运行中,试验段的振动状态良好。

    图  2  应力云图
    Fig.  2  Stress nephogram
    图  3  变形云图
    Fig.  3  Deformation nephogram
    图  4  各阶模态振型图
    Fig.  4  Modal shape

    闭口试验段采用气浮驱动,重复定位精度不高,若不进行精准定位,对流场品质影响很大。同时,闭口试验段利用气浮驱动就位后,须与风洞洞体或地基进行定位和锁紧,以防风洞运行过程中闭口试验段在气动力作用下移位,降低风洞流场品质,影响风洞安全运行。在设计中采取了如下措施:在闭口试验段前、后支腿支座不同侧面位置分别设置一组导向轮和垂直定位装置,在对应支腿就位位置的预埋钢板上设置与风洞轴线平行的Y形导向槽;在闭口试验段入口端中心标高位置两侧设置导向销,位置与收缩段出口段两侧的弹性滚轮导向装置对应;在闭口试验段入口两侧设置转销连接机构,用于闭口试验段入口法兰与收缩段出口法兰的快速连接,两法兰之间充气密封,确保试验段流场达标。

    具体定位过程为:通过气垫运输使闭口试验段支腿上的导向轮进入Y形导向槽,经Y形导向槽沿气流反向由粗略到精准导向,再将闭口试验段两侧的导向销插入收缩段出口两侧的弹性滚轮导向装置,进行高精度导向;当两法兰面接触后,插入支腿位置的垂直定位装置,防止闭口试验段气垫泄压后位置移动,然后进行气垫泄压。依靠弹性滚轮装置弹性下降至风洞安装位置,此时以转销机构锁紧连接法兰面,充气密封。闭口试验段移出与上述相反。

    提升平移机构用于将闭口试验段上中壁板(长5.5 m ,宽 5.3 m,重14 t)提升600 mm后,再沿试验段轴线方向后移5500 mm,为腹撑支杆、尾撑变角度机构、模型等提供安装通道。其关键技术主要有2个方面的挑战:

    1)实现提升及平移功能。

    2)提升重量重,提升过程中螺旋升降机丝杆受压,存在失稳风险。

    主要解决措施为:

    1)为实现提升及平移功能,提升平移机构由提升平台和平移机构组成。提升平台通过一组4台机械同步的螺旋升降机实现对上中壁板的提升功能;平移机构采用两侧对称丝杆螺母副驱动、直线导轨副导向,并控制两侧伺服电机实现同步驱动。

    2)提升平移机构原设计方案如图5所示,提升框架与上中壁板固连为一体,由4台螺旋升降机同步驱动。螺旋升降机丝杆在提升过程中受压力作用,其外载荷为提升框架和上中壁板重量之和,受载偏大,存在失稳风险。经优化后,提升平移机构如图6所示:提升机构只提升上中壁板部分,提升载荷减小(约8 t);螺旋升降机丝杆只受拉力作用,不存在失稳风险;4组提升支腿均有轴承导向装置,横向稳定性增加,极大提高了机构刚度,满足设计要求。

    图  5  提升平移机构原设计方案
    Fig.  5  The preliminary schematic design of lift and move mechanism
    图  6  提升平移机构设计改进方案
    Fig.  6  The final schematic design of lift and move mechanism

    为满足可更换地效试验活动地板(单带)的设计要求,重点考虑了更换的便捷性与重复性定位精度,采用如图7所示的行走轮式可更换下壁板,由电机驱动沿布置在下框架上的钢轨移动。如图8所示,壁板前端设置一对导向销,用于壁板就位过程中的导向,以此确保横向定位精度。壁板两侧各设2个插销定位机构(图9),用于确保壁板轴向定位精度。同时,将壁板与试验段框架连为一体,共同承受气动载荷,以确保壁板在试验状态不松动。更换壁板时,将壁板更换车与试验段出口对齐,松开侧向插销,壁板通过行走机构自试验段框架运行至壁板更换车上,完成下壁板更换。

    图  7  下壁板结构图
    Fig.  7  The structure of the bottom wall
    图  8  导向销示意图
    Fig.  8  The transverse guide structure
    图  9  插销机构图
    Fig.  9  The axial guide structure

    为满足闭口试验段轴向静压梯度调节需要,试验段出口宽度尺寸可调,可调范围为5.50~5.74 m。侧壁板前端通过铰链固定在过渡段上,后端通过2组手动推杆驱动侧壁板绕前端铰链转动,实现试验段出口宽度尺寸的调节(图10)。侧壁板尺寸大(13.5 m× 4 m × 0.336 m,长 × 宽 × 厚),质量重(>10 t),为避免在开度调节时侧壁板产生非均匀变形,设计中做如下处理:

    图  10  侧壁扩散角调节方式
    Fig.  10  The side wall expansion angle adjustment method

    1)在侧壁板下均匀布置多组滑动支座,壁板重量通过支座均匀作用于下方主纵梁,侧壁板与支座接触面为不锈钢/聚四氟乙烯摩擦副。经计算,该摩擦副产生的摩擦力对侧壁板变形影响极小。

    2)通过控制侧壁板高度,使侧壁板上端与上框架和主纵梁间留有一定间隙,避免侧壁板开度调节时发生卡滞。

    闭口试验段结构复杂,制造和装配精度要求高,因此解决制造和装配过程工艺问题十分重要。主要从加工变形控制技术和装配精度保证措施2个方面进行说明。

    闭口试验段焊接加工件多为大尺寸薄壁件,在焊接过程中容易产生变形,若焊接工艺采取不当,将导致加工余量无法满足要求。对上述结构件主要采取焊前预防、焊接过程控制、焊后校正等手段控制焊接变形[15]。以如下3类结构件为例:

    1) 壁板类焊接

    以上壁板(6 m × 5.5 m × 12 mm,长 × 宽 × 厚,筋为槽钢)为例(图11),焊缝全部集中在底板上表面,底板下表面需切削加工。该结构件焊接主要控制角变形,解决措施为在壁板下表面装焊相同大小的底板。焊接时,同时从底板中心向两侧对称装焊各肋板。采用对称的逆向分段焊接法焊接各肋板,将整个焊缝分成若干分段,每一段的焊接方向皆与焊接总方向相反。

    图  11  上壁板
    Fig.  11  The upper solid wall

    2) 箱型梁焊接

    左右主纵梁均为细长箱形结构,在焊接过程中应严格控制焊接产生的扭曲和角变形。图12为主纵梁焊接的场景。焊接时,在顶板与底板表面装焊防变形底板;从中间向两端分别装焊除底座外的各肋板、档板,通过分析施焊后可能产生变形的大小及方向,在焊接前使被焊件发生大小相同、方向相反的变形,以抵消或补偿焊接导致的变形(反变形措施)。

    图  12  主纵梁焊接场景
    Fig.  12  The welding scene of the main beam

    3) 框架焊接

    上框架结构(13.25 m × 7.7 m × 0.25 m,长 × 宽 × 高,如图13所示)刚性较差,焊接时容易产生扭曲变形和角变形。焊接时,先装焊各横梁和纵梁,回火后按接口部位采用镗削方式加工至满足装配焊接要求。将各横梁与纵梁的装配位置整体焊接在一个大底板上定位,并对结构刚性差的部位使用拉筋进行加固,防止焊接变形和后续的热处理变形。

    图  13  上框架
    Fig.  13  The upper strengthened frame

    闭口试验段尺寸大、装配零件多、装配精度要求高。按照从下到上、从外到内的顺序,依次装配两侧主纵梁、下壁板、侧框架、左右侧壁板、上壁板和上框架。

    闭口试验段安装主要有2个关键指标要求:1)上下转盘同轴度≤Φ0.3 mm;2)壁板的平面度≤5 mm、平行度≤5 mm、对称度≤2 mm。实践证明,为保证上下转盘同轴度要求,在保证主纵梁加工质量的前提下,在装配环节应避免两侧主纵梁发生扭转、倾斜等现象。计算表明主纵梁安装精度对上下转盘同轴度安装指标的实现起决定性作用,应该在安装前通过理论计算,确定出其安装精度范围,避免安装后期指标不达标而重新调整。闭口试验段内型面的平面度、平行度、对称度及对角偏差等要求较高,而内腔型面共由14块壁板组成(上、下各由5块壁板组成,左、右各由2块壁板组成),各壁板尺寸大、刚度不一,壁板之间须互相协调才能达到型面要求。因此,闭口试验段壁板装配应根据不同的壁板形式,确定不同的调整方式,如采用拉(顶)杆使壁板产生强制变形以满足平面度要求,增加壁板间的连接装置使壁板阶差满足要求等[16]。通过采用上述方法,该闭口试验段各安装指标均达到要求。

    1)经试验表明:闭口试验段在最高风速130 m/s的工况下能够安全稳定运行。试验段的加工精度满足试验要求,各风速工况下模型中心区气流湍流度< 0.05%;在常用风速条件下,调节扩散角尺寸,轴向静压梯度满足了设计指标(≤0.003)的要求。

    2)闭口试验段高精度定位和可移动的功能特点,满足了腹撑、尾撑、半模、地效、活动地板(单带)等试验功能的需求。

    3)闭口试验段的定位与锁紧、提升机构等设计方案对同类型风洞的闭口试验段研制具有一定借鉴意义。

  • 图  1   Tomo-PIV工作原理

    Fig.  1   Principles of Tomo-PIV

    图  2   相机布局方式[21]

    Fig.  2   The camera layout[21]

    图  3   相机系统孔径角对重构质量的影响[21]

    Fig.  3   Reconstruction quality factor versus system aperture angle [21]

    图  4   不同示踪粒子浓度的实验图像(左为示踪粒子浓度)[22]

    Fig.  4   Images of experiments at different particle concentrations (the left is the concentration of particles, ppp)[22]

    图  5   标定残差示意图

    Fig.  5   Schematic diagram of calibration residuals

    图  6   粒子匹配示意图[24]

    Fig.  6   Schematic diagram of particle matching[24]

    图  7   虚假粒子

    Fig.  7   Ghost particles

    图  8   瞬时涡结构等值面(d为圆柱直径)[17]

    Fig.  8   Iso-surface of instantaneous vortex structure [17]

    图  9   三维流场瞬时截面图(d为圆柱直径)[55]

    Fig.  9   Iso-surface of instantaneous field[55]

    图  10   瞬时三维结构[56]

    Fig.  10   Instantaneous three-dimensional structure[56]

    图  11   激波边界层概念模型[63]

    Fig.  11   Conceptual model of shock/boundary interaction[63]

    图  12   Tomo-PIV相关工程应用

    Fig.  12   Some engineering applications of Tomo-PIV

    表  1   典型三维重构算法

    Table  1   Typical three-dimensional reconstruction algorithm

    Reconstruction methods References
    Multiplicative first guess MART Worth and Nickels(2008)[26]
    Multiplied line of sight MART Atkinson, et al.(2008)[27]
    Adaptivemultiplied line
    of sight MART
    Atkinson, et al. (2010)[28]
    Motion tracking enhanced MART Novara, et al. (2010)[29]
    MG(multi resolution) algorithm Discetti and Astarita(2012)[30]
    Spatial filtering MART Discetti, et al.(2013b)[31]
    Intensity enhanced MART Wang, et al.(2016)[32]
    Simultaneous MART Atkinson and Soria(2009)[33]
    Block iterative MART Thomas, et al.(2014)[34]
    PVR-SMART Champagnat, et al.(2014)[35]
    Multigrid MART Discetti, et al.[36]
    下载: 导出CSV
  • [1] 申功炘, 张永刚, 曹晓光, 等. 数字全息粒子图像测速技术(DHPIV)研究进展[J]. 力学进展, 2007, 37(4): 563-574. DOI: 10.3321/j.issn:1000-0992.2007.04.006

    SHEN G X, ZHANG Y G, CAO X G, et al. Research advances in digital holography particle image velocimetry[J]. Advances in Mechanics, 2007, 37(4): 563-574. doi: 10.3321/j.issn:1000-0992.2007.04.006

    [2] 庄逢甘, 黄志澄. 未来高科技战争对空气动力学创新发展的需求[C]//空气动力学前沿研究论文集. 2003.
    [3] 崔尔杰. 空天技术发展与现代空气动力学[C]//近代空气动力学研讨会论文集. 2005.
    [4]

    DÉLERY J M. Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 129-154. doi: 10.1146/annurev.fluid.33.1.129

    [5] 叶友达, 卢笙, 张涵信. 高超声速远程机动飞行器气动特性研究[C]//近代空气动力学研讨会论文集. 2005.
    [6]

    TRIANTAFYLLON M S. Hydrodynamics of fishlike swimming[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 33~53. DOI: 10.1146/annurev.fluid.32.1.33

    [7] 孙茂. 微型飞行器的仿生流体力学[C]//空气动力学前沿研究论文集. 2003.
    [8]

    DIMOTAKIS P E. Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 329-356. doi: 10.1146/annurev.fluid.36.050802.122015

    [9]

    DUSSAGE J P. Compressible turbulence and energetic scale: What is known from experiments in supersonic flow[J]. Flow Turbulence and Combusion, 2001, 66: 373~391. doi: 10.1023/A:1013585413220

    [10] 袁湘江, 张涵信. 激波分离等复杂流动现象对扰动波传播的影响[C]//近代空气动力学研讨会论文集. 2005.
    [11]

    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 381-411. doi: 10.1146/annurev.fluid.36.050802.122124

    [12]

    HO C M, TAI Y C. Micro-electro-mechanical-systems (mems) and fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 579-612. doi: 10.1146/annurev.fluid.30.1.579

    [13]

    PEREIRA F, GHARIB M. Defocusing digital particle image velocimetry and the three dimensional characterization of 2-phase flows[J]. Measurement Science and Technology, 2002, 13: 683~694. doi: 10.1088/0957-0233/13/5/305

    [14]

    WILLERT C E, GHARIB M. Three-dimensional particle imaging with a single camera[J]. Experiments in Fluids, 1992, 12(6): 353-358. doi: 10.1007/bf00193880

    [15]

    WANG H L, HAN W, XU M. The measurement of water flow rates in the straight microchannel based on the scanning micro-PIV technique[C]//Proc of the 7th International Symposium on Precision Engineering Measurement and Instrumentation. 2011. doi: 10.1063/1.3651997

    [16]

    MENG H, HUSSAIN F. Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence[J]. Fluid Dynamics Research, 1991, 8(1-4): 33-52. doi: 10.1016/0169-5983(91)90029-i

    [17]

    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z

    [18]

    ELSINGA G E, WIENEKE B, SCARANO F, et al. Assessment of Tomo-PIV for three-dimensional flows[C]//Proc of the 6th International Symposium on Particle Image Velocimetry. 2005.

    [19]

    TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 1986

    [20]

    SOLOFF S M, ADRIAN R J, LIU Z C. Distortion compensation for generalized stereoscopic particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1441-1454. doi: 10.1088/0957-0233/8/12/008

    [21]

    SCARANO F. Tomographic PIV: principles and practice[J]. Measurement Science and Technology, 2013, 24(1): 012001. doi: 10.1088/0957-0233/24/1/012001

    [22]

    MICHAELIS D, NOVARA M, SCARANO F, et al. Comparison of volume reconstruction techniques at different particle densities[C]//Proc of the 15th International Symposium Applications of Laser Techniques to Fluid Mechanics. 2010.

    [23]

    WIENEKE B. Volume self-calibration for 3D particle image velocimetry[J]. Experiments in Fluids, 2008, 45(4): 549-556. doi: 10.1007/s00348-008-0521-5

    [24]

    DISCETTI S, ASTARITA T. The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV[J]. Measurement Science and Technology, 2014, 25(8): 084001. doi: 10.1088/0957-0233/25/8/084001

    [25]

    SCHANZ D, GESEMANN S, SCHRÖDER A, et al. Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction[J]. Measurement Science and Technology, 2013, 24(2): 024009. doi: 10.1088/0957-0233/24/2/024009

    [26]

    WORTH N A, NICKELS T B. Acceleration of Tomo-PIV by estimating the initial volume intensity distribution[J]. Experiments in Fluids, 2008, 45(5): 847-856. doi: 10.1007/s00348-008-0504-6

    [27]

    ATKINSON C H, DILLON-GIBBONS C J, HERPIN S, et al. Reconstruction techniques for tomographic PIV (tomo-PIV) of a turbulent boundary layer[C]//Proc of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2008.

    [28]

    ATKINSON C H, BUCHMANN N, STANISLAS M, et al. Adaptive MLOS-SMART improved accuracy tomographic PIV[C]//Proc of the 15th International Symposium on Application of Laser Techniques to Fluid Mechanics Lisbon. 2010.

    [29]

    NOVARA M, BATENBURG K J, SCARANO F. Motion tracking-enhanced MART for tomographic PIV[J]. Measurement Science and Technology, 2010, 21(3): 035401. doi: 10.1088/0957-0233/21/3/035401

    [30]

    DISCETTI S, ASTARITA T. A fast multi-resolution approach to tomographic PIV[J]. Experiments in Fluids, 2012, 52(3): 765-777. doi: 10.1007/s00348-011-1119-x

    [31]

    DISCETTI S, NATALE A, ASTARITA T. Spatial filtering improved tomographic PIV[J]. Experiments in Fluids, 2013, 54(4): 1505. doi: 10.1007/s00348-013-1505-7

    [32]

    WANG H P, GAO Q, WEI R J, et al. Intensity-enhanced MART for tomographic PIV[J]. Experiments in Fluids, 2016, 57(5): 87. doi: 10.1007/s00348-016-2176-y

    [33]

    ATKINSON C, SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47(4-5): 553-568. doi: 10.1007/s00348-009-0728-0

    [34]

    THOMAS L, TREMBLAIS B, DAVID L. Optimization of the volume reconstruction for classical Tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies[J]. Measurement Science and Technology, 2014, 25(3): 035303. doi: 10.1088/0957-0233/25/3/035303

    [35]

    CHAMPAGNAT F, CORNIC P, CHEMINET A, et al. Tomographic PIV: particles versus blobs[J]. Measurement Science and Technology, 2014, 25(8): 084002. doi: 10.1088/0957-0233/25/8/084002

    [36]

    DISCETTI S, ASTARITA T. Acceleration of Tomo-PIV by multigrid reconstruction schemes[C]//Proc of the 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2010.

    [37]

    ELSINGA G E, WESTERWEEL J, SCARANO F, et al. On the velocity of ghost particles and the bias errors in Tomographic-PIV[J]. Experiments in Fluids, 2011, 50(4): 825-838. doi: 10.1007/s00348-010-0930-0

    [38]

    ELSINGA G E. Tomographic Particle Image Velocimetry and its application to turbulent boundary layers[D]. Melbourne: Delft University of Technology, 2008.

    [39]

    WORTH N A, NICKELS T B, SWAMINATHAN N. A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[J]. Experiments in Fluids, 2010, 49(3): 637-656. doi: 10.1007/s00348-010-0840-1

    [40] 高琪, 王成跃, 王洪平, 等. 基于连续性条件的体PIV后处理技术[J]. 北京航空航天大学学报, 2013, 39(5): 693-696.

    GAO Q, WANG C Y, WANG H P, et al. Post-processing of volumetric PIV data based on continuity condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 693-696.

    [41]

    HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]//Proc of the Studying Turbulence Using Numerical Simulation Databases. 1988.

    [42]

    CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777. doi: 10.1063/1.857730

    [43]

    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396. doi: 10.1017/s002211209900467x

    [44]

    JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. doi: 10.1017/s0022112095000462

    [45]

    GAO Q, WANG H P, WANG J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55(9): 2501-2510. doi: 10.1007/s11431-012-4921-7

    [46] 丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 51-58. DOI: 10.11729/syltlx20160141

    DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 51-58. doi: 10.11729/syltlx20160141

    [47]

    SHI S X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006

    [48]

    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201

    [49] 梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. DOI: 10.11729/syltlx20180165

    MEI D, DING J F, SHI S X. High resolution volumetric light field particle image velocimetry with dual plenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165

    [50]

    SCARANO F, ELSINGA G E, BOCCI E, et al. Investigation of 3-D coherent structures in the turbulent cylinder wake using Tomo-PIV[C]//Proc of the 13th International Symposium on Application of Laser Techniques to Fluid Mechanics. 2006.

    [51]

    HAIN R, KÄHLER C J, MICHAELIS D. Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate[J]. Experiments in Fluids, 2008, 45(4): 715-724. doi: 10.1007/s00348-008-0553-x

    [52]

    GHAEMI S, SCARANO F. Counter-hairpin vortices in the turbulent wake of a sharp trailing edge[J]. Journal of Fluid Mechanics, 2011, 689: 317-356. doi: 10.1017/jfm.2011.431

    [53] 许相辉, 蒋甲利, 牛中国, 等. 圆柱尾流场的Tomo-PIV测量[J]. 实验流体力学, 2015, 29(5): 60-64. DOI: 10.11729/syltlx20150022

    XU X H, JIANG J L, NIU Z G, et al. Measurements of cylinder's wake by Tomo-PIV[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 60-64. doi: 10.11729/syltlx20150022

    [54] 高琪, 王洪平. 层析PIV技术及其合成射流测量[J]. 中国科学(技术科学), 2013, 43(7): 828-835. DOI: 10.1360/092013-360

    GAO Q, WANG H P.Tomographic PIV technique and the measurement of synthetic jet[J]. China Science: Technical Science, 2013, 43(7): 825-835. doi: 10.1360/092013-360

    [55]

    ZHU H Y, WANG C Y, WANG H P, et al. Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder[J]. Journal of Fluid Mechanics, 2017, 831: 743-778. doi: 10.1017/jfm.2017.647

    [56]

    ELSINGA G E, WIENEKE B, SCARANO F, et al. Tomographic 3D-PIV and applications[J]. Application Physics. 2008, 112: 103-125. doi: 10.1007/S00348-009-0629-2

    [57] 王洪平, 高琪, 魏润杰, 等. 基于层析PIV的湍流边界层展向涡研究[J]. 实验流体力学, 2016, 30(2): 59-66. DOI: 10.11729/syltlx20150086

    WANG H P, GAO Q, WEI R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 59-66. doi: 10.11729/syltlx20150086

    [58] 王洪平, 高琪, 王晋军. 基于层析PIV的湍流边界层涡结构统计研究[J]. 中国科学(物理学力学天文学), 2015, 45(12): 59-72. DOI: 10.1360/SSPMA2015-00480

    WANG H P, GAO Q, WANG J J. The statistical study of vortex structure in turbulent boundary layer flow based on Tomographic PIV[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12): 59-72. doi: 10.1360/SSPMA2015-00480

    [59] 田海平, 杨绍琼, 李山. 壁湍流相干结构局部动力学模型的实验研究[C]//第九届全国实验流体力学学术会议论文集. 2013.

    TIAN H P, YANG S Q, LI S. Experimental study on the local dynamics model of wall turbulent coherent structures[C]//Proc of the 9th national conference on experimental fluid mechanics. 2013. doi: 10.1360/SSPMA2015-00480

    [60]

    TANG Z Q, JIANG N, SCHRÖDER A, et al. Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow[J]. Acta Mechanica Sinica, 2012, 28(3): 572-582. doi: 10.1007/s10409-012-0082-y

    [61]

    YANG S Q, LI S, TIAN H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2): 284-294. doi: 10.1007/s10409-015-0541-3

    [62] 赵洲, 丁俊飞, 施圣贤. 基于单相机光场PIV的逆压湍流边界层测量[J]. 实验流体力学, 2019, 33(2): 66-71. DOI: 10.11729/syltlx20180192

    ZHAO Z, DING J F, SHI S X. Volumetric measurement of an adverse pressure-pressure-gradient turbulent boundary layer using single-camera light field PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192

    [63]

    HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622: 33-62. doi: 10.1017/s0022112008005090

    [64]

    YE Q Q, SCHRIJER F, SCARANO F. Tomographic PIV measurement of hypersonic boundary layer transition past a micro-ramp[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-4512

    [65] 李晓辉, 王宏伟, 魏连风, 等. 基于Tomo-PIV的翼型小肋减阻尾流场测量[C]//首届中国空气动力学大会论文集. 2018.

    LI X H, WANG H W, WEI L F, et al. The measurement of wake flow on airfoil drag reduction of riblets using Tomo-PIV[C]//Proc of the 1st aerodynamics conference of china. 2018.

    [66]

    STOLT A, ESTEVADEORDAL J, KRECH J, et al. A tomographic PIV and TSP study of leading-edge structures on stall behaviors of NACA0015[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0476

    [67]

    AVALLONE F, ARCELEÓN C, PRÖBSTING S, et al. Tomographic-PIV investigation of the flow over serrated trailing-edges[R]. AIAA 2016-1012, 2016. doi: 10.251416.2017-0476

    [68]

    FELLI M, FALCHI M, DUBBIOSO G. Experimental approaches for the diagnostics of hydroacoustic problems in naval propulsion[J]. Ocean Engineering, 2015, 106: 1-19. doi: 10.1016/j.oceaneng.2015.06.049

    [69]

    WEINKAUFF J, MICHAELIS D, DREIZLER A, et al. Tomographic PIV measurements in a turbulent lifted jet flame[J]. Experiments in Fluids, 2013, 54(12): 1624. doi: 10.1007/s00348-013-1624-1

    [70]

    PETERSON B, BAUM E, DING C P, et al. Assessment and application of tomographic PIV for the spray-induced flow in an IC engine[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3467-3475. doi: 10.1016/j.proci.2016.06.114

    [71]

    VIOLATO D, MOORE P, SCARANO F. Lagrangian and Eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV[J]. Experiments in Fluids, 2011, 50(4): 1057-1070. doi: 10.1007/s00348-010-1011-0

    [72]

    VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2012, 24(4): 049901. doi: 10.1063/1.3665141

图(12)  /  表(1)
计量
  • 文章访问数:  1971
  • HTML全文浏览量:  321
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-03-07
  • 刊出日期:  2021-02-24

目录

/

返回文章
返回
x 关闭 永久关闭