Mach 6 freestream calibration of Φ0.6 m low-level-noise experimental platform and measurement of instability waves of sharp cone
-
摘要:
地面实验是空气动力学研究的重要手段之一,湍流/转捩实验对风洞设备流场品质要求高。空天飞行空气动力科学与技术全国重点实验室基于Ludwieg管设计原理,采用大口径快速开启阀门(简称快开阀)技术,建设了Φ0.6 m口径、适合开展湍流/转捩机理研究的低噪声高速实验平台(简称SKLA-TT1)。本文首先简要介绍了SKLA-TT1的组成,重点介绍了大口径快开阀的启动过程,实验测得快开阀的启动时间约为19 ms;之后使用皮托耙和皮托探头对SKLA-TT1实验段的自由来流进行校测。结果表明,实验平台有效运行时间约为130 ms,并且采用快开阀主控的Ludwieg管实验平台可以获得良好的流场品质;流场校测数据显示,来流马赫数分布品质优良,且在单位来流雷诺数8.0 × 106~25.0 × 106/m范围内,自由来流压力脉动幅值为0.36~0.56%,达到了低噪声水平,适用于开展高速湍流/转捩等空气动力学关键基础科学问题的实验研究。尖锥模型压力脉动实验结果显示,边界层中存在高频第二模态扰动,第二模态沿着流向先不断增长,然后逐渐消失并出现湍流特征。
Abstract:Ground experiment is one of the important means of aerodynamics research. For experimental investigations of transition and turbulence, the wind tunnels should keep a low level of freestream noise. Utilizing fast-acting valve with large diameter and following the conception of Ludwieg tubes, the State Key Laboratory of Aerodynamics constructed a Φ0.6 meter low-level-noise hypersonic experimental platform (SKLA-TT1 for short), which is suitable for conducting researches on turbulent and transition mechanisms. Firstly, the composition of SKLA-TT1 is briefly introduced, together with a detailed description of the fast-acting valve. It is found that the start-up time of the fast-acting valve is about 19 ms. Secondly, preliminary freestream calibration of the SKLA-TT1 is conducted using pitot rakes and pitot tubes. Results show that the effective running time of the experimental platform is about 130 ms. Moreover, SKLA-TT1 controlled by the fast-acting valve shows high flow quality. The Mach 6 of SKLA-TT1 has excellent flow uniformity and flow quality, the normalized RMS pitot pressure fluctuations are 0.36~0.56 % in the test region for unit Reynolds number from 8.0 × 106 to 25.0 × 106/m. Thus, this facility shows promising potential in experimental studies on key aerodynamic fundamental scientific issues such as hypersonic turbulence and transition. The wall pressure signals of a sharp cone show that there are the second mode waves with high frequencies in the boundary layer. When the location moving downstream, the second mode waves first grow and then gradually disappear into turbulence-like power special denticity.
-
Keywords:
- high-speed flow /
- Ludwieg tube /
- flow field calibration /
- sharp cone experiment
-
-
-
[1] 李益翔. 美国高超声速飞行器发展历程研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. LI Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin: Harbin Institute of Technology, 2016.
[2] 李雯, 董达飞, 侯霞. 俄罗斯高超声速飞行器发展动态及关注重点[J]. 飞航导弹, 2021(11): 46–51. DOI: 10.16338/j.issn.1009-1319.20210115 LI W, DONG D F, HOU X. Development trends and focus of Russian hypersonic vehicles[J]. Aerodynamic Missile Journal, 2021(11): 46–51. doi: 10.16338/j.issn.1009-1319.20210115
[3] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 125-138. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 125-138.
[4] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: what next?[J]. AIAA Journal, 2001, 39(8): 1517–1531. doi: 10.2514/2.1476
[5] SMITS A J, MCKEON B J, MARUSIC I. High–reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353–375. doi: 10.1146/annurev-fluid-122109-160753
[6] 唐青. 高超声速平板边界层转捩实验研究[D]. 北京: 北京大学, 2014. TANG Q. Experimental study on boundary layer transition of hypersonic flat plate[D]. Beijing: Peking University, 2014.
[7] 唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报, 2023, 41(8): 44–58. DOI: 10.7638/kqdlxxb-2023.0096 TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica, 2023, 41(8): 44–58. doi: 10.7638/kqdlxxb-2023.0096
[8] 孙宗祥, 李文佳, 唐志共, 等. 美国空气动力地面试验能力及发展趋势分析[J]. 空气动力学学报, 2023, 41(1): 1–21. DOI: 10.7638/kqdlxxb-2022.0179 SUN Z X, LI W J, TANG Z G, et al. The capability of aerodynamic ground test in the USA and its development trend analysis[J]. Acta Aerodynamica Sinica, 2023, 41(1): 1–21. doi: 10.7638/kqdlxxb-2022.0179
[9] RADEZTSKY R H, REIBERT M S, SARIC W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11): 1370–1377. doi: 10.2514/2.635
[10] SCHNEIDER S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 641–664. doi: 10.2514/1.34489
[11] HOFFERTH J, BOWERSOX R, SARIC W. The Mach 6 quiet tunnel at texas A&M: quiet flow performance[C]//Proc of the 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2010: 4794. doi: 10.2514/6.2010-4794.
[12] 陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51–60. DOI: 10.11729/syltlx20210054 CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51–60. doi: 10.11729/syltlx20210054
[13] 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. DOI: 10.11729/syltlx20180172 CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7°half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
[14] 刘是成, 姜应磊, 董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学, 2022, 36(2): 122–130. DOI: 10.11729/syltlx20210136 LIU S C, JIANG Y L, DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 122–130. doi: 10.11729/syltlx20210136
[15] SCHRIJER F F J, BANNINK W J. Description and flow assessment of the delft hypersonic ludwieg tube[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 125–133. doi: 10.2514/1.40773
[16] LUDWIEG H, HOTTNER T, GRAUER-CARSTENSEN H. Der rohrwindkanal der aerodynamischen versuchsanstalt goettingen (the ludwig-tube (wind tunnel) of the Gottingen aerodynamic facility) [R]. 1968.
[17] HOTTNER T. Eichmessungen im rohrwindkanal 500 der AVA[R]. Aerodynamischen Versuchsanstalt, 1969.
[18] 黄冉冉, 张成键, 李创创等. 华中科技大学 Φ 0.5 m 马赫 6 Ludwieg 管风洞设计与流场初步校测[J]. 空气动力学学报, 2023, 41(1): 39–48,85. DOI: 10.7638/kqdlxxb-2022.0146 HUANG R R, ZHANG C J, LI C C, et al. Design and preliminary freestream calibration of HUST Φ0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(1): 39–48,85. doi: 10.7638/kqdlxxb-2022.0146
[19] LAKEBRINK M T, BOWCUTT K G, WINFREE T, et al. Optimization of a Mach-6 quiet wind-tunnel nozzle[J]. Journal of Spacecraft and Rockets, 2017, 55(2): 315–321. doi: 10.2514/1.A33794
[20] KIMMEL R L, BORG M P, JEWELL J S, et al. AFRL ludwieg tube initial performance[C]//Proc of the 55th AIAA Aerospace Sciences Meeting, Grapevine. 2017: 0102. doi: 10.2514/6.2017-0102
[21] MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in ludwieg tubes at Mach 6[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0878. doi: 10.2514/6.2019-0878
[22] LI Z Y, XIONG Y D, YUAN X X, et al. A-variant design of hypersonic ludwieg tube wind tunnel[J]. AIAA Journal, 2022, 60(7): 3990–4005. doi: 10.2514/1.J060935
[23] ZHANG C H, TANG Q, LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1): 48–54. doi: 10.1007/s10409-013-0009-2
[24] XU X W, YI S H, ZHANG F, et al. Influences of steps on the hypersonic boundary-layer transition on a cone[J]. AIAA Journal, 2020, 59(2): 439–446. doi: 10.2514/1.J059888
[25] HUANG G L, SI W F, LEE C B. Inner structures of Gortler streaks[J]. Physics of Fluids, 2021, 33(3): 034116. doi: 10.1063/5.0042769
[26] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79–95. doi: 10.1146/annurev-fluid-122109-160750
[27] KENDALL J. Wind tunnel experiments relating to supersonic and hypersonic boundary layer transition[C]//Proc of the 12th Aerospace Sciences Meeting, Washington. 1974: 133. doi: 10.2514/6.1974-133
[28] STETSON K F. Mach 6 experiments of transition on a cone at angle of attack[J]. Journal of Spacecraft and Rockets, 1982, 19(5): 397–403. doi: 10.2514/3.62276
[29] STETSON K. Nosetip bluntness effects on cone frustum boundary layer transition in hypersonic flow[C]//Proc of the 16th Fluid and Plasmadynamics Conference, Danvers. 1983: 1763. doi: 10.2514/6.1983-1763
[30] FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 731–738. doi: 10.2514/1.17860
[31] KNAUSS H, ROEDIGER T, BOUNTIN D A, et al. Novel sensor for fast heat flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 255–265. doi: 10.2514/1.32011
[32] LAURENCE S J, WAGNER A, HANNEMANN K. Schlieren-based techniques for investigating instability development and transition in a hypersonic boundary layer[J]. Experiments in Fluids, 2014, 55(8): 1782. doi: 10.1007/s00348-014-1782-9
[33] ZHANG C H, ZHU Y D, CHEN X, et al. Transition in hypersonic boundary layers[J]. AIP Advances, 2015, 5(10): 107137–107137. doi: 10.1063/1.4935019
[34] MARINEAU E C, MORARU G C, LEWIS D R, et al. Mach 10 boundary layer transition experiments on sharp and blunted cones (invited)[C]//Proc of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2014: 3108. doi: 10.2514/6.2014-3108
[35] 徐席旺, 易仕和, 张锋, 等. 高超声速圆锥边界层转捩实验研究[J]. 气体物理, 2022, 7(3): 45–59. DOI: 10.19527/j.cnki.2096-1642.0905 XU X W, YI S H, ZHANG F, et al. Experimental study on the hypersonic boundary layer transition over a cone[J]. Physics of Gases, 2022, 7(3): 45–59. doi: 10.19527/j.cnki.2096-1642.0905
[36] MACK L M. Boundary-layer linear stability theory[R]. Tech. Rep. California Institute of Technology, Jet Propulsion Laboratory, 1984.
[37] KENNEDY R E, LAURENCE S J, SMITH M S, et al. Investigation of the second-mode instability at Mach 14 using calibrated schlieren[J]. Journal of Fluid Mechanics, 2018, 845: R2. doi: 10.1017/jfm.2018.269
[38] CHOKANI N. Nonlinear evolution of Mack modes in a hypersonic boundary layer[J]. Physics of Fluids, 2005, 17(1): 014102. doi: 10.1063/1.1825471