Surface shear stress sensitive film sensing technology and its validation experiments in a low-speed wind tunnel
-
摘要:
本文介绍了表面剪应力敏感膜传感技术的基本原理和主要优势,通过典型案例介绍了表面剪应力敏感膜在水洞、低速风洞和高速风洞中的应用。对该技术的测量方式和数据处理方法进行了优化,在中国空气动力研究与发展中心0.8 m × 0.6 m低速风洞中,将自制表面剪应力敏感膜应用于高速列车缩比模型风洞验证实验,得到了不同速度条件下的平面剪应力分布云图,对云图特征和数据重复性偏差进行了分析。研究结果表明:自制简化表面剪应力敏感膜(剪切模量为
1224.82 Pa)可精确测量局部平面的表面剪应力分布,在3~13 Pa范围内的重复性优于0.4%,验证了优化后的表面剪应力敏感膜传感技术在一定范围内具有优异的稳定性和重复性。Abstract:A new surface shear stress sensitive film sensing technology was introduced, including the basic conceptual features, principles, technical approaches and the current development status at home and abroad. The main advantages of the surface shear stress sensitive film were analyzed, and the applications of the surface shear stress sensitive film were shown through typical cases in the water tunnel, low-speed wind tunnel and high-speed wind tunnel. We optimized the measurement method and data processing method of this technology, and carried out validation experiments of the homemade surface shear stress-sensitive film with a scaled-down model of the high-speed train in the 0.8 m × 0.6 m Low-speed Wind Tunnel of China Aerodynamic Research and Development Center (CARDC). The cloud maps of surface shear stress distributions at several velocities were obtained, whose characteristics and repeatability were analyzed. The results show that the homemade simplified surface shear stress sensitive film, whose shear modulus is
1224.82 Pa, can accurately measure the surface shear stress distribution in the local region, and the repeatability is better than 0.4% in the range of 3~13 Pa. The optimized surface shear stress sensitive film sensing technology is verified to have excellent stability and repeatability in a certain range. -
-
表 1 不同风速下的平均剪应力及重复性评估
Table 1 Mean shear stress and repeatability evaluation at different wind speeds
风速
/(m·s−1)平均剪应力/Pa 6次测量的
平均值/Paδ/% 第1次
测量第2次
测量第3次
测量第4次
测量第5次
测量第6次
测量10 0.85 0.90 0.66 0.46 0.50 0.54 0.65 40.29% 15 1.20 1.34 1.27 1.16 1.25 1.38 1.27 4.86% 20 2.16 2.21 1.91 1.85 2.00 2.21 2.06 3.40% 25 2.68 2.80 2.70 2.94 2.85 2.94 2.82 1.30% 30 4.26 4.18 4.29 4.24 4.33 4.13 4.24 0.38% 35 6.08 6.01 5.92 6.14 6.19 6.02 6.06 0.24% 40 7.90 7.99 7.81 7.76 7.88 7.78 7.85 0.13% 45 9.17 9.45 9.35 9.28 9.50 9.18 9.32 0.14% 50 12.00 12.12 12.48 12.06 11.84 11.49 11.99 0.21% 表 2 剪切模量325 Pa敏感膜的δ评价结果
Table 2 Evaluation results of δ of 325 Pa sensitive film
风速/(m·s−1) 平均剪应力/Pa δ/% 10 0.62 34.31% 15 1.35 1.64% 20 2.03 1.51% 25 2.89 0.77% 30 4.29 0.25% -
[1] 孙宝云, 马炳和, 邓进军, 等. 热敏式壁面剪应力微传感器技术研究进展[J]. 实验流体力学, 2017, 31(2): 26–33,43. DOI: 10.11729/syltlx20170022 SUN B Y, MA B H, DENG J J, et al. Research progress on thermal wall shear stress sensors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 26–33,43. doi: 10.11729/syltlx20170022
[2] LIU X H, LI Z Y, GAO N. An improved wall shear stress measure-ment technique using sandwiched hot-film sensors[J]. Theoretical and Applied Mechanics Letters, 2018, 8(2): 137–141. doi: 10.1016/j.taml.2018.02.010
[3] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. DOI: 10.7638/kqdlxxb-2021.0450 GAO N, LIU X H. A review of wall-shear-stress measurement techniques for practical applictions[J]. Acta Aerodynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450
[4] DENGEL P, FERNHOLZ H H, HESS M. Skin-friction measurements in two- and three-dimensional highly turbu-lent flows with separation[C]// Advances in Turbulence – Proceedings of the First European Turbulence Conference. 1987: 470-479.
[5] 史云龙. 高超声速风洞模型表面摩阻测量技术研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015. [6] 中国空气动力研究与发展中心超高速空气动力研究所. 一种模型表面摩阻测量装置: 201710511200.7 [P]. 2017-09-26. [7] OILER J, TANG R, MA T, et al. Thermoelectric cool-film shear stress sensor[J]. IEEE Electron Device Letters, 2014, 35(7): 783–785. doi: 10.1109/LED.2014.2320976
[8] 南京航空航天大学. 一种高超声速油膜干涉法摩阻测量实验装置及实验方法: 201810453837. X[P]. 2018-11-30. [9] 陈星, 毕志献, 宫建, 等. 基于剪敏液晶涂层的光学摩阻测量技术研究[J]. 实验流体力学, 2012, 26(6): 70–74. DOI: 10.3969/j.issn.1672-9897.2012.06.015 CHEN X, BI Z X, GONG J, et al. Optical skin friction measurement using shear-sensitive liquid-crystal coatings[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 70–74. doi: 10.3969/j.issn.1672-9897.2012.06.015
[10] 北京航空航天大学. 一种高精度非接触气动摩擦阻力测量方法及测量装置: 201510475306.7[P]. 2015-08-05. [11] CRAFTON J W, FONOV S D, JONES E G, et al. Measurements of skin friction in water using surface stress sensitive films[J]. Measurement Science and Technology, 2008, 19(7): 075801. doi: 10.1088/0957-0233/19/7/075801
[12] 王传凯. 利用弹性膜测量明渠流底部摩擦应力[D]. 大连: 大连理工大学, 2017. [13] CRAFTON J W, FONOV S D, JONES E G, et al. Measurements of skin friction in water using surface stress sensitive films[J]. Measurement Science and Technology, 2008, 19(7): 075801. doi: 10.1088/0957-0233/19/7/075801
[14] MARKS C, SONDERGAARD R, WOLF M. Surface stress sensitive film as a separation control sensor[C]//Proc of the 50th AlAA Aerospace sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012: 746.
[15] FONOV S, CRAFTON J, GOSS L, et al. Investigation of pressure and friction force distributions on a model tail wing using pressure sensitive paint and surface stress sensitive film[C]//Proc of the International Congress on Instrumenta-tion in Aerospace Simulation Facilities (ICIASF 2007). 2007. doi: 10.1109/ICIASF.2007.4380889
[16] WOIKE M R, DAVIS D O, CLEM M M, et al. The investigation of shock wave boundary layer interactions using fast pressure sensitive paint and surface stress sensitive film measurement techniques[C]//Proc of the 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2017: 3732. doi: 10.2514/6.2017-3732
[17] TARASOV V N, ORLOV A A. Method for determining shear stress on aerodynamic model surface[J]. Patent of Russia, 1990, 4841553(23): 1990.
[18] FONOV S D, E. JONES G E, CRAFTON J W. Method for determining a surface contact force: US20050115331[P]. 2004-11-05.
[19] 潘兵, 谢惠民, 续伯钦, 等. 数字图像相关中的亚像素位移定位算法进展[J]. 力学进展, 2005, 35(3): 345–352. DOI: 10.3321/j.issn:1000-0992.2005.03.005 PAN B, XIE H M, XU B Q, et al. Development of sub-pixel displacements registration algorithms in digital image correlation[J]. Advances in Mechanics, 2005, 35(3): 345–352. doi: 10.3321/j.issn:1000-0992.2005.03.005