表面剪应力敏感膜传感技术及其低速风洞验证实验

冯文跃, 陈爽, 严来军, 李斌成, 周大唐, 陈晓栋

冯文跃, 陈爽, 严来军, 等. 表面剪应力敏感膜传感技术及其低速风洞验证实验[J]. 实验流体力学, doi: 10.11729/syltlx20240023.
引用本文: 冯文跃, 陈爽, 严来军, 等. 表面剪应力敏感膜传感技术及其低速风洞验证实验[J]. 实验流体力学, doi: 10.11729/syltlx20240023.
FENG W Y, CHEN S, YAN L J, et al. Surface shear stress sensitive film sensing technology and its validation experiments in a low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240023.
Citation: FENG W Y, CHEN S, YAN L J, et al. Surface shear stress sensitive film sensing technology and its validation experiments in a low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240023.

表面剪应力敏感膜传感技术及其低速风洞验证实验

基金项目: 国家重点研发计划项目(2020YFA0405700);装备试验鉴定技术研究项目(2022G02000420007)
详细信息
    作者简介:

    冯文跃: (1998—),男,土家族,贵州铜仁人,硕士研究生。研究方向:非接触测量技术。E-mail:1353410587@qq.com

    通讯作者:

    严来军: E-mail:laijun11-11@163.com

  • 中图分类号: V211.71

Surface shear stress sensitive film sensing technology and its validation experiments in a low-speed wind tunnel

  • 摘要:

    本文介绍了表面剪应力敏感膜传感技术的基本原理和主要优势,通过典型案例介绍了表面剪应力敏感膜在水洞、低速风洞和高速风洞中的应用。对该技术的测量方式和数据处理方法进行了优化,在中国空气动力研究与发展中心0.8 m × 0.6 m低速风洞中,将自制表面剪应力敏感膜应用于高速列车缩比模型风洞验证实验,得到了不同速度条件下的平面剪应力分布云图,对云图特征和数据重复性偏差进行了分析。研究结果表明:自制简化表面剪应力敏感膜(剪切模量为1224.82 Pa)可精确测量局部平面的表面剪应力分布,在3~13 Pa范围内的重复性优于0.4%,验证了优化后的表面剪应力敏感膜传感技术在一定范围内具有优异的稳定性和重复性。

    Abstract:

    A new surface shear stress sensitive film sensing technology was introduced, including the basic conceptual features, principles, technical approaches and the current development status at home and abroad. The main advantages of the surface shear stress sensitive film were analyzed, and the applications of the surface shear stress sensitive film were shown through typical cases in the water tunnel, low-speed wind tunnel and high-speed wind tunnel. We optimized the measurement method and data processing method of this technology, and carried out validation experiments of the homemade surface shear stress-sensitive film with a scaled-down model of the high-speed train in the 0.8 m × 0.6 m Low-speed Wind Tunnel of China Aerodynamic Research and Development Center (CARDC). The cloud maps of surface shear stress distributions at several velocities were obtained, whose characteristics and repeatability were analyzed. The results show that the homemade simplified surface shear stress sensitive film, whose shear modulus is 1224.82 Pa, can accurately measure the surface shear stress distribution in the local region, and the repeatability is better than 0.4% in the range of 3~13 Pa. The optimized surface shear stress sensitive film sensing technology is verified to have excellent stability and repeatability in a certain range.

  • 图  15   不同风速下敏感膜表面粒子位移分布

    Fig.  15   Particle displacement distribution on the surface of a sensitive film at different wind speeds

    图  1   表面剪应力敏感膜概念图

    Fig.  1   Concept of surface shear stress sensitive film

    图  2   表面剪应力敏感膜传感系统[11]

    Fig.  2   Sensing system based on surface shear stress sensitive film[11]

    图  3   低速风洞开口试验段中的高速列车

    Fig.  3   High-speed train in low-speed wind tunnel opening test section

    图  4   敏感膜表面标记粒子分布图

    Fig.  4   Distribution of labeled particles on sensitive film surface

    图  5   剪切模量测量系统

    Fig.  5   Shear modulus measurement system

    图  6   剪应力与剪应变的拟合直线

    Fig.  6   Straight line fitting of the shear stress to the shear strain

    图  7   敏感膜腔体

    Fig.  7   Sensitive film cavity

    图  8   列车模型顶部

    Fig.  8   Top of train model

    图  9   高速列车风洞实验环境图

    Fig.  9   High-speed train wind tunnel experimental environment

    图  10   40 m/s风速下的剪切位移分布

    Fig.  10   Distribution of shear displacement at 40 m/s wind speed

    图  11   40 m/s风速下的边缘剪切位移分布

    Fig.  11   Edge shear displacement distribution at 40 m/s wind speed

    图  12   40 m/s风速下的全局振动位移分布

    Fig.  12   Global vibration displacement distribution at 40 m/s wind speed

    图  13   重构后的全局位移场

    Fig.  13   Reconstructed global displacement field

    图  14   剪应力分布

    Fig.  14   Shear stress distribution

    图  16   流体阻碍加速

    Fig.  16   Fluid Impedance acceleration

    图  17   敏感膜表面粒子位移分布图

    Fig.  17   Sensitive film displacement distribution

    图  18   平均剪应力对比

    Fig.  18   Comparison of average shear stress

    表  1   不同风速下的平均剪应力及重复性评估

    Table  1   Mean shear stress and repeatability evaluation at different wind speeds

    风速
    /(m·s−1)
    平均剪应力/Pa 6次测量的
    平均值/Pa
    δ/%
    第1次
    测量
    第2次
    测量
    第3次
    测量
    第4次
    测量
    第5次
    测量
    第6次
    测量
    10 0.85 0.90 0.66 0.46 0.50 0.54 0.65 40.29%
    15 1.20 1.34 1.27 1.16 1.25 1.38 1.27 4.86%
    20 2.16 2.21 1.91 1.85 2.00 2.21 2.06 3.40%
    25 2.68 2.80 2.70 2.94 2.85 2.94 2.82 1.30%
    30 4.26 4.18 4.29 4.24 4.33 4.13 4.24 0.38%
    35 6.08 6.01 5.92 6.14 6.19 6.02 6.06 0.24%
    40 7.90 7.99 7.81 7.76 7.88 7.78 7.85 0.13%
    45 9.17 9.45 9.35 9.28 9.50 9.18 9.32 0.14%
    50 12.00 12.12 12.48 12.06 11.84 11.49 11.99 0.21%
    下载: 导出CSV

    表  2   剪切模量325 Pa敏感膜的δ评价结果

    Table  2   Evaluation results of δ of 325 Pa sensitive film

    风速/(m·s−1) 平均剪应力/Pa δ/%
    10 0.62 34.31%
    15 1.35 1.64%
    20 2.03 1.51%
    25 2.89 0.77%
    30 4.29 0.25%
    下载: 导出CSV
  • [1] 孙宝云, 马炳和, 邓进军, 等. 热敏式壁面剪应力微传感器技术研究进展[J]. 实验流体力学, 2017, 31(2): 26–33,43. DOI: 10.11729/syltlx20170022

    SUN B Y, MA B H, DENG J J, et al. Research progress on thermal wall shear stress sensors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 26–33,43. doi: 10.11729/syltlx20170022

    [2]

    LIU X H, LI Z Y, GAO N. An improved wall shear stress measure-ment technique using sandwiched hot-film sensors[J]. Theoretical and Applied Mechanics Letters, 2018, 8(2): 137–141. doi: 10.1016/j.taml.2018.02.010

    [3] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. DOI: 10.7638/kqdlxxb-2021.0450

    GAO N, LIU X H. A review of wall-shear-stress measurement techniques for practical applictions[J]. Acta Aerodynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450

    [4]

    DENGEL P, FERNHOLZ H H, HESS M. Skin-friction measurements in two- and three-dimensional highly turbu-lent flows with separation[C]// Advances in Turbulence – Proceedings of the First European Turbulence Conference. 1987: 470-479.

    [5] 史云龙. 高超声速风洞模型表面摩阻测量技术研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.
    [6] 中国空气动力研究与发展中心超高速空气动力研究所. 一种模型表面摩阻测量装置: 201710511200.7 [P]. 2017-09-26.
    [7]

    OILER J, TANG R, MA T, et al. Thermoelectric cool-film shear stress sensor[J]. IEEE Electron Device Letters, 2014, 35(7): 783–785. doi: 10.1109/LED.2014.2320976

    [8] 南京航空航天大学. 一种高超声速油膜干涉法摩阻测量实验装置及实验方法: 201810453837. X[P]. 2018-11-30.
    [9] 陈星, 毕志献, 宫建, 等. 基于剪敏液晶涂层的光学摩阻测量技术研究[J]. 实验流体力学, 2012, 26(6): 70–74. DOI: 10.3969/j.issn.1672-9897.2012.06.015

    CHEN X, BI Z X, GONG J, et al. Optical skin friction measurement using shear-sensitive liquid-crystal coatings[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 70–74. doi: 10.3969/j.issn.1672-9897.2012.06.015

    [10] 北京航空航天大学. 一种高精度非接触气动摩擦阻力测量方法及测量装置: 201510475306.7[P]. 2015-08-05.
    [11]

    CRAFTON J W, FONOV S D, JONES E G, et al. Measurements of skin friction in water using surface stress sensitive films[J]. Measurement Science and Technology, 2008, 19(7): 075801. doi: 10.1088/0957-0233/19/7/075801

    [12] 王传凯. 利用弹性膜测量明渠流底部摩擦应力[D]. 大连: 大连理工大学, 2017.
    [13]

    CRAFTON J W, FONOV S D, JONES E G, et al. Measurements of skin friction in water using surface stress sensitive films[J]. Measurement Science and Technology, 2008, 19(7): 075801. doi: 10.1088/0957-0233/19/7/075801

    [14]

    MARKS C, SONDERGAARD R, WOLF M. Surface stress sensitive film as a separation control sensor[C]//Proc of the 50th AlAA Aerospace sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012: 746.

    [15]

    FONOV S, CRAFTON J, GOSS L, et al. Investigation of pressure and friction force distributions on a model tail wing using pressure sensitive paint and surface stress sensitive film[C]//Proc of the International Congress on Instrumenta-tion in Aerospace Simulation Facilities (ICIASF 2007). 2007. doi: 10.1109/ICIASF.2007.4380889

    [16]

    WOIKE M R, DAVIS D O, CLEM M M, et al. The investigation of shock wave boundary layer interactions using fast pressure sensitive paint and surface stress sensitive film measurement techniques[C]//Proc of the 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2017: 3732. doi: 10.2514/6.2017-3732

    [17]

    TARASOV V N, ORLOV A A. Method for determining shear stress on aerodynamic model surface[J]. Patent of Russia, 1990, 4841553(23): 1990.

    [18]

    FONOV S D, E. JONES G E, CRAFTON J W. Method for determining a surface contact force: US20050115331[P]. 2004-11-05.

    [19] 潘兵, 谢惠民, 续伯钦, 等. 数字图像相关中的亚像素位移定位算法进展[J]. 力学进展, 2005, 35(3): 345–352. DOI: 10.3321/j.issn:1000-0992.2005.03.005

    PAN B, XIE H M, XU B Q, et al. Development of sub-pixel displacements registration algorithms in digital image correlation[J]. Advances in Mechanics, 2005, 35(3): 345–352. doi: 10.3321/j.issn:1000-0992.2005.03.005

图(18)  /  表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-05-01
  • 录用日期:  2024-05-19
  • 网络出版日期:  2024-08-05

目录

    /

    返回文章
    返回
    x 关闭 永久关闭