Characteristics of boundary layer stability of HyTRV model bottom
-
摘要: 高超声速转捩研究飞行器(Hypersonic Transition Research Vehicle, HyTRV)是为高超声速复杂三维边界层转捩研究设计的升力体标模,更接近真实飞行器外形。为深入认识HyTRV边界层稳定性特征及转捩机制,验证数值模拟和理论分析结果,本文在马赫6常规风洞中,采用红外热成像技术和高频压力传感器获得了0°和2°迎角时HyTRV标模下表面(迎风面)边界层转捩阵面及不稳定波演化特征,并与一维稳定性分析结果进行了对比。研究结果表明:迎角为2°时,标模下表面横流失稳区较0°迎角时缩小且后移,标模中心线处转捩先于两侧横流区。另外,横流区存在宽频的高频信号,信号幅值在转捩完成前达到饱和。该信号包含多频段扰动,多种扰动之间相互作用,使得频谱变宽,边界层最终转捩变为湍流。Abstract: The HyTRV (Hypersonic Transition Research Vehicle) is designed for the study of hypersonic complex three-dimensional boundary layer transition, the shape of which is close to that of the real aircraft. The principal objective of this research is to gain deeper understanding of the stability characteristics and transition mechanism of the boundary layer over the HyTRV model and verify the results of numerical simulation and theoretical analysis. In the Mach 6 wind tunnel, the transition front and unstable wave evolution characteristics at the bottom of the HyTRV model, obtained by the infrared thermal imaging technology and high-frequency pressure sensors respectively, were compared with the results of one-dimensional stability analysis. At the angle of attack of 2 degrees, the instability crossflow region on the windward side, which is located after the front of transition at the centerline, shrinks and moves backwards compared to the results with zero angle of attack. Broadband high-frequency signals, containing multiple disturbances in different frequency bands, were found in the crossflow region. The interaction between various disturbances widens the frequency spectrum. Then the boundary layer appears to breakdown. The signal amplitude reaches saturation before the transition is complete.
-
-
表 1 实验工况
Table 1 Experimental conditions
马赫数Ma 迎角α/(°) Re∞/(m−1) 6 0 1.0 × 107、1.5 × 107、2.0 × 107 6 2 1.5 × 107、2.0 × 107 -
[1] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7–23. DOI: 10.7527/S1000-6893.2014.0224 YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7–23. doi: 10.7527/S1000-6893.2014.0224
[2] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. DOI: 10.7638/kqdlxxb-2017.0030 CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030
[3] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372. DOI: 10.7527/S1000-6893.2014.0244 LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372. doi: 10.7527/S1000-6893.2014.0244
[4] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报, 2015, 36(3): 714–723. DOI: 10.7527/S1000-6893.2014.0245 XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 714–723. doi: 10.7527/S1000-6893.2014.0245
[5] MORKOVIN M V. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39: 1882.
[6] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183–195. DOI: 10.7638/kqdlxxb-2018.0011 YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183–195. doi: 10.7638/kqdlxxb-2018.0011
[7] LI F, CHOUDHARI M, CHANG C L, et al. Transition analysis for the ascent phase of HIFiRE-1 flight experiment[J]. Journal of Spacecraft and Rockets, 2015, 52(5): 1283–1293. doi: 10.2514/1.a33258
[8] MALIK M R. 40 years of transition research at NASA: a personal perspective[C]//SHERWIN S, SCHMID P, WU X. IUTAM Laminar-Turbulent Transition. Cham, Switzerland: Springer, 2022: 33-53. doi: 10.1007/978-3-030-67902-6_3.
[9] CRAIG S A, SARIC W S. Crossflow instability in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2016, 808: 224–244. doi: 10.1017/jfm.2016.643
[10] LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637–1647. doi: 10.1007/s10409-021-01136-5
[11] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(4): 124317. DOI: 10.7527/S1000-6893.2020.24317 CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 124317. doi: 10.7527/S1000-6893.2020.24317
[12] 郑文鹏. HyTRV外形的三维边界层转捩实验研究[D]. 长沙: 国防科技大学, 2021. ZHEN W P. Experimental study on three-dimensional boundary layer transition of HyTRV[D]. Changsha: National University of Defense Technology, 2021.
[13] 陈久芬, 徐洋, 蒋万秋, 等. 升力体外形高超声速边界层转捩红外测量实验[J/OL]. 实验流体力学. doi: 10.11729/syltlx20220030. CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J/OL]. Journal of Experiments in Fluid Mechanics, 2022. doi: 10.11729/syltlx20220030.
[14] MEN H Y, LI X L, LIU H W. Direct numerical simulations of hypersonic boundary layer transition over a hypersonic transition research vehicle model lifting body at different angles of attack[J]. Physics of Fluids, 2023, 35(4): 044111. doi: 10.1063/5.0146651
[15] QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. doi: 10.1186/s42774-021-00082-x
[16] CHEN X, DONG S W, TU G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938: A8. doi: 10.1017/jfm.2021.1125
[17] KIMMEL R L, ADAMCZAK D, HARTLEY D, et al. HIFiRE–5b flight overview[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-3131.
[18] TUFTS M W, GOSSE R, KIMMEL R L. PSE analysis of crossflow instability on HIFiRE 5b flight test[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-3136.
[19] TUFTS M W, GOSSE R C, KIMMEL R L. Parabolized stability equation analysis of crossflow instability on HIFiRE–5b flight test[J]. Journal of Spacecraft and Rockets, 2018, 55(6): 1369–1378. doi: 10.2514/1.A34149
[20] BORG M P, KIMMEL R L. Ground test measurements of boundary-layer instabilities and transition for HIFiRE–5 at flight-relevant attitudes[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-3135.
[21] BORG M P, KIMMEL R L. Ground test of transition for HIFiRE–5b at flight-relevant attitudes[J]. Journal of Spacecraft and Rockets, 2018, 55(6): 1329–1340. doi: 10.2514/1.A34163
[22] JULIANO T J, PAQUIN L A, BORG M P. HIFiRE–5 boundary-layer transition measured in a Mach-6 quiet tunnel with infrared thermography[J]. AIAA Journal, 2019, 57(5): 2001–2010. doi: 10.2514/1.j056750
[23] BORG M P, KIMMEL R L. Measurements of crossflow instability modes for HIFiRE–5 at angle of attack[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-1681.
[24] SHI M T, ZHU W K, LEE C B. Crossflow instability of hypersonic flow over an elliptic cone[C]//Proc of the AIAA Aviation 2020 Forum, Virtual Event. 2020. doi: 10.2514/6.2020-3073.
[25] PAREDES P, GOSSE R, THEOFILIS V, et al. Linear modal instabilities of hypersonic flow over an elliptic cone[J]. Journal of Fluid Mechanics, 2016, 804: 442–466. doi: 10.1017/jfm.2016.536
[26] RIHA A K, GROOT K J, MOYES A, et al. Secondary-instability-mode identification in hypersonic crossflow-dominated boundary layers[C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-2242.
[27] FISHER D, HORSTMANN K H, RIEDEL H. Flight test measurement techniques for laminar flow. Volume 23(Les techniques de mesure en vol des ecoulements laminaires)[R]. AGARDograph 300. Flight Test Techniques Series, Volume 23. Washington: RTO/NATO, 2003.
[28] BORG M P, KIMMEL R L, STANFIELD S. Traveling crossflow instability for HIFiRE–5 in a quiet hypersonic wind tunnel[C]//Proc of the 43rd Fluid Dynamics Conference. 2013. doi: 10.2514/6.2013-2737.