高弗劳德数下绕锥头回转体通气空泡流态特征及压力脉动特性实验研究

李涵, 郝亮, 张孟杰, 刘涛涛, 孔德才

李涵, 郝亮, 张孟杰, 等. 高弗劳德数下绕锥头回转体通气空泡流态特征及压力脉动特性实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230138.
引用本文: 李涵, 郝亮, 张孟杰, 等. 高弗劳德数下绕锥头回转体通气空泡流态特征及压力脉动特性实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230138.
LI H, HAO L, ZHANG M J, et al. Experimental study on the flow pattern and pressure fluctuation characteristics of ventilated cavitating flows around a conical axisymmetric body at high Froude number[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230138.
Citation: LI H, HAO L, ZHANG M J, et al. Experimental study on the flow pattern and pressure fluctuation characteristics of ventilated cavitating flows around a conical axisymmetric body at high Froude number[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230138.

高弗劳德数下绕锥头回转体通气空泡流态特征及压力脉动特性实验研究

基金项目: 国家自然科学基金项目(12002038,U22B6010,52109111,U20B2004)
详细信息
    作者简介:

    李涵: (1999—),女,河北邯郸人,硕士研究生。研究方向:通气空泡流态特征及非定常特性。E-mail:lh184358@163.com

    通讯作者:

    刘涛涛: E-mail:liutaotao@bit.edu.cn

  • 中图分类号: O359

Experimental study on the flow pattern and pressure fluctuation characteristics of ventilated cavitating flows around a conical axisymmetric body at high Froude number

  • 摘要: 本文基于循环水洞,采用高速摄影和压力传感器对绕锥头回转体通气空泡的流场特性进行了测量,重点讨论了高弗劳德数下通气空泡的流态特征以及不同空泡形态下回转体壁面的压力演化规律。研究结果表明:高弗劳德数下,重力效应可以忽略,绕锥头回转体通气空泡呈现出泡沫状(FC)、间歇透明状(ITC)和连续透明状(CTC)等三种典型的流态。其中,FC状空泡位于小通气率范围内,空泡末端以小尺度空泡团脱落为主,回转体壁面瞬态压力分布呈现出高频、低幅值脉动,压力系数最大脉动幅值为0.18;ITC状空泡为FC和CTC之间的过渡流态,空泡末端的大尺度空泡团脱落使得回转体壁面瞬态压力分布呈现出低频、高幅值脉动,压力系数最大脉动幅值为0.49;CTC状空泡位于大通气率范围内,空泡脱落以及压力脉动特性与ITC状空泡类似。特定的弗劳德数下,由FC逐渐转变为CTC的过程中,不同测点获得的回转体壁面压力都呈现出先减小后增大并稳定的趋势。
    Abstract: This paper is based on a circulating water tunnel, employing high-speed photography and pressure sensors to measure the flow characteristics of the ventilated cavity around a conical axisymmetric body. The focus of the discussion is on the flow characteristics of ventilated cavities at high Froude numbers and the pressure evolution on the axisymmetric body surface for different cavity shapes. The research results indicate that under high Froude numbers, gravity effects can be neglected, and ventilated cavities around the conical axisymmetric body exhibit three typical flow patterns: Foamy cavity (FC), Intermittent and Transparent cavity (ITC), and Continuous and Transparent cavity (CTC). Among these, FC cavities are found within a small ventilation rate range, accompanied by some small-scale cavity shedding at cavity’s trailing. The transient pressure distribution on the axisymmetric body surface exhibits high-frequency, low-amplitude fluctuations, with the maximum pressure coefficient fluctuation amplitude of 0.18. ITC cavities represent a transitional flow pattern between FC and CTC, characterized by the shedding of large-scale cavity clusters from the cavity’s trailing, resulting in low-frequency, high-amplitude fluctuations in the transient pressure distribution on the axisymmetric body surface, with a maximum pressure coefficient fluctuation amplitude of 0.49. CTC cavities are observed within a large ventilation rate range, exhibiting similar characteristics in cavity shedding and pressure pulsation to ITC cavities. Under specific Froude numbers, during the transition from FC to CTC, the pressure on the axisymmetric body surface at different measurement points exhibits a trend of initially decreasing, then increasing, and finally stabilizing.
  • 图  1   空泡水筒实验示意图

    Fig.  1   Schematic diagram of cavitation water tunnel experiment

    图  2   回转体模型示意图

    Fig.  2   The size of axisymmetric body .

    图  3   FC的实验观测图及示意图(Fr=9.58,CQ=0.004,σv=5.45)

    Fig.  3   Experimental observation and schematic illustration of the foamy cavity (FC) at Fr=9.58 , CQ=0.004 and σv=5.45.

    图  4   ITC的实验观测图及示意图(Fr=9.58,CQ=0.034,σv=5.47)

    Fig.  4   Experimental observation and schematic illustration of the intermittent and transitional cavity (ITC) at Fr=9.58, CQ=0.034 and σv=5.47.

    图  5   CTC的实验观测图及示意图(Fr=9.58,CQ=0.082,σv=5.47)

    Fig.  5   Experimental observation and schematic illustration of the continuous and transparent cavity (CTC) at Fr=9.58 , CQ=0.082 and σv=5.47.

    图  6   回转体通气空泡流态图谱

    Fig.  6   Globe flow patterns of ventilated cavities around an axisymmetric body.

    图  7   Fr=9.58时不同通气率下的时均空泡外形(σv=5.47)

    Fig.  7   Time-averaged cavity shapes at different ventilation rates at Fr=9.58 and σv=5.47.

    图  8   不同通气率下的压力系数

    Fig.  8   The pressure coefficient at different ventilation rates

    图  9   不同通气率下的空化数

    Fig.  9   The cavitation number at different ventilation rates

    图  10   两种流态下空泡长度随时间的变化(FC: Fr=9.58, CQ=0.004; ITC: Fr=9.58, CQ=0.034)

    Fig.  10   The change of cavity length with time in two flow patterns(FC: Fr=9.58, CQ=0.004; ITC: Fr=9.58, CQ=0.034)

    图  11   FC空泡的发展演化过程与压力系数(Fr=9.58,CQ=0.004)

    Fig.  11   Evolution process and pressure coefficient of FC cavity (Fr=9.58,CQ=0.004)

    图  12   ITC空泡的发展演化过程与压力系数(Fr=9.58,CQ=0.034)

    Fig.  12   Evolution process and pressure coefficient of ITC cavity (Fr=9.58,CQ=0.034)

    表  1   不同通气率下的空化数

    Table  1   The number of cavitation at different ventilation rates

    CQP1P2P3P4P5P6P7
    0.0170.116//////
    0.0340.2570.2430.2040.1610.059//
    0.0400.2530.2400.2100.2130.1240.027/
    0.0580.1890.1790.1490.2220.1740.1840.180
    0.0670.1590.1490.1190.1890.1490.1590.160
    0.0780.1570.1460.1180.1870.1430.1540.154
    0.0920.1540.1430.1110.1770.1430.1530.155
    0.1110.1530.1410.1110.1690.1400.1500.150
    下载: 导出CSV
  • [1]

    SANDERS W C, WINKEL E S, DOWLING D R, et al. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 552: 353–380. doi: 10.1017/S0022112006008688

    [2] 王海斌, 张嘉钟, 魏英杰, 等. 水下航行体通气超空泡减阻特性实验研究[J]. 船舶工程, 2006, 28(3): 14–17.

    WANG H B, ZHANG J Z, WEI Y J, et al. Experimental study of the drag reduction of ventilated supercavity of underwater bodies[J]. Ship Engineering, 2006, 28(3): 14–17.

    [3] 颜开, 褚学森, 许晟, 等. 超空泡流体动力学研究进展[J]. 船舶力学, 2006, 10(4): 148–155.

    YAN K, CHU X S, XU S, et al. Research progress of supercavitation hydrodynamics[J]. Journal of Ship Mechanics, 2006, 10(4): 148–155.

    [4]

    SHAO S Y, KARN A, AHN B K, et al. A comparative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities[J]. Experimental Thermal and Fluid Science, 2017, 88: 519–529. doi: 10.1016/j.expthermflusci.2017.07.005

    [5]

    QIN S J, WU Y, WU D Z, et al. Experimental investigation of ventilated partial cavitation[J]. International Journal of Multiphase Flow, 2019, 113: 153–164. doi: 10.1016/j.ijmultiphaseflow.2019.01.007

    [6] 陈伟政, 韦喜忠, 李鹏. 通气空泡水洞试验壁面影响理论分析及空化数修正[J]. 实验流体力学, 2021, 35(2): 112–116. DOI: 10.11729/syltlx20200007

    CHEN W Z, WEI X Z, LI P. Wall effects and cavitation number correcting of supercavitating tests in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 112–116. doi: 10.11729/syltlx20200007

    [7]

    ZOU W, ZHANG X. Shear layer on a ventilated supercavity wall[J]. International Journal of Multiphase Flow, 2021, 135: 103504. doi: 10.1016/j.ijmultiphaseflow.2020.103504

    [8] 段磊, 王国玉, 付细能. 绕圆头回转体通气空化流型的实验研究[J]. 实验流体力学, 2014, 28(4): 31–36,64. DOI: 10.11729/syltlx20130040

    DUAN L, WANG G Y, FU X N. Experimental research on multiphase flow of ventilated cavity around a hemisphere cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 31–36,64. doi: 10.11729/syltlx20130040

    [9]

    REICHARDT H. The law of cavitation bubbles as axially symmetric bodies in a flow[J]. Ministry of Aircraft Production, Report and Translation, 1946, 766: 322–326.

    [10]

    COX R N, CLAYDEN W A. Air entrainment at the rear of a steady cavity[C]//Proceedings of the Symposium on Cavitation in Hydrodynamics. 1956.

    [11]

    KARN A, ARNDT R E A, HONG J R. An experimental investigation into supercavity closure mechanisms[J]. Journal of Fluid Mechanics, 2016, 789: 259–284. doi: 10.1017/jfm.2015.680

    [12]

    XU H Y, LUO K, DANG J J, et al. Numerical investigation of supercavity geometry and gas leakage behavior for the ventilated supercavities with the twin-vortex and the re-entrant jet modes[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 628–640. doi: 10.1016/j.ijnaoe.2021.04.007

    [13] 许海雨, 罗凯, 黄闯, 等. 低弗劳德数通气超空泡初生及发展演变特性[J]. 上海交通大学学报, 2021, 55(8): 934–941. DOI: 10.16183/j.cnki.jsjtu.2020.128

    XU H Y, LUO K, HUANG C, et al. Variation characteristics of formation and development of ventilated supercavity at low Froude numbers[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 934–941. doi: 10.16183/j.cnki.jsjtu.2020.128

    [14] 陆凡, 李杰. 无后体空化器双涡管泄气模式通气超空泡内部流动结构研究[J]. 水动力学研究与进展A辑, 2023, 38(3): 356–362. DOI: 10.16076/j.cnki.cjhd.2023.03.004

    LU F, LI J. Study on flow structure in supercavity ventilated by double vortex tube in backless cavitation device[J]. Chinese Journal of Hydrodynamics, 2023, 38(3): 356–362. doi: 10.16076/j.cnki.cjhd.2023.03.004

    [15]

    WU Y, LIU Y, SHAO S Y, et al. On the internal flow of a ventilated supercavity[J]. Journal of Fluid Mechanics, 2019, 862: 1135–1165. doi: 10.1017/jfm.2018.1006

    [16]

    LV Y F, ZHANG M J, LIU T T, et al. Physical and numerical study on the transition of gas leakage regime of ventilated cavitating flow[J]. Ocean Engineering, 2021, 239: 109861. doi: 10.1016/j.oceaneng.2021.109861

    [17]

    SHAO S Y, BALAKRISHNA A, YOON K, et al. Effect of mounting strut and cavitator shape on the ventilation demand for ventilated supercavitation[J]. Experimental Thermal and Fluid Science, 2020, 118: 110173. doi: 10.1016/j.expthermflusci.2020.110173

    [18]

    LEE S J, KAWAKAMI E, KARN A, et al. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations[J]. Fluid Dynamics Research, 2016, 48(4): 045506. doi: 10.1088/0169-5983/48/4/045506

    [19]

    ZHANG X W, WEI Y J, ZHANG J Z, et al. Experimental research on the shape characters of natural and ventilated supercavitation[J]. Journal of Hydrodynamics, Ser B, 2007, 19(5): 564–571. doi: 10.1016/S1001-6058(07)60154-1

    [20] 魏英杰, 闵景新, 王聪, 等. 重力静压梯度场中通气空泡形态研究[J]. 兵工学报, 2009, 30(9): 1217–1222.

    WEI Y J, MIN J X, WANG C, et al. Research on ventilated cavity shapes in a longitudinal gravity force field[J]. Acta Armamentarii, 2009, 30(9): 1217–1222.

    [21]

    WANG Y W, HUANG C G, DU T Z, et al. Shedding phenomenon of ventilated partial cavitation around an underwater projectile[J]. Chinese Physics Letters, 2012, 29(1): 014601. doi: 10.1088/0256-307x/29/1/014601

    [22] 张孝石. 水下航行体空化流动与压力脉动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG X S. Study on the cavitating flows and pressure fluctuation for underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2017.

    [23]

    SUN T Z, ZHANG X S, XU C, et al. Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows[J]. European Journal of Mechanics - B/Fluids, 2019, 76: 223–232. doi: 10.1016/j.euromechflu.2019.02.011

    [24]

    LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment[J]. Ocean Engineering, 2017, 129: 343–351. doi: 10.1016/j.oceaneng.2016.11.026

    [25]

    LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of ventilated partial cavitating flows with special emphasis on flow pattern regime and unsteady shedding behavior around an axisymmetric body at different angles of attack[J]. Ocean Engineering, 2018, 147: 289–303. doi: 10.1016/j.oceaneng.2017.10.039

    [26]

    HAO L, KONG D C, WU Y, et al. Transition and gas leakage mechanisms of ventilated cavities around a conical axisymmetric body[J]. Physical Review Fluids, 2022, 7(12): 123901. doi: 10.1103/physrevfluids.7.123901

    [27] 孙铁志. 通气参数对潜射航行体流体动力特性影响的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    SUN T Z. Numerical study on effect of ventilation parameters on hydrodynamic characteristics of submaring-launched vehicle[D]. Harbin: Harbin Institute of Technology, 2017.

    [28]

    ZHANG X S, WANG C, WEKESA D W. Numerical and experimental study of pressure-wave formation around an underwater ventilated vehicle[J]. European Journal of Mechanics - B/Fluids, 2017, 65: 440–449. doi: 10.1016/j.euromechflu.2017.01.011

    [29]

    KAWAKAMI E, ARNDT R E A. Investigation of the behavior of ventilated supercavities[J]. Journal of Fluids Engineering, 2011, 133(9): 091305. doi: 10.1115/1.4004911

    [30] 张广, 于开平, 邹望, 等. 通气空泡最小空化数影响因素数值研究[J]. 哈尔滨工业大学学报, 2013, 45(5): 13–17. DOI: 10.11918/j.issn.0367-6234.2013.05.003

    ZHANG G, YU K P, ZOU W, et al. Numerical research on influencing factors of ventilated cavity minimum cavitation number[J]. Journal of Harbin Institute of Technology, 2013, 45(5): 13–17. doi: 10.11918/j.issn.0367-6234.2013.05.003

    [31]

    ZOU W, YU K P, ARNDT R E A, et al. On minimum cavitation number of the ventilated supercavity in water tunnel[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(10): 1945–1951. doi: 10.1007/s11433-012-4917-0

    [32]

    LEE S J, PAIK B G, KIM K Y, et al. On axial deformation of ventilated supercavities in closed-wall tunnel experiments[J]. Experimental Thermal and Fluid Science, 2018, 96: 321–328. doi: 10.1016/j.expthermflusci.2018.03.014

  • 期刊类型引用(3)

    1. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 . 百度学术
    2. 温青,龙航,华旭刚,池俊豪,孙洪鑫. 宽高比5∶1矩形断面涡激振动锁定区间内涡激力展向相关性分析. 振动工程学报. 2023(02): 319-325 . 百度学术
    3. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 . 百度学术

    其他类型引用(2)

图(12)  /  表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  48
  • PDF下载量:  13
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-01-10
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-03-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭