Composite drag control and energy flux analysis for wall turbulence
-
摘要:
湍流减阻的技术与机理具有重要的科学和工程意义。近年来,研究者对壁湍流的减阻策略和机理开展了多方位探索。本文回顾了摩阻的能流分析框架,该框架将摩阻系数和能量耗散率定量地结合了起来,清晰地给出了驱动能量和控制能量在相干、随机和平均流动中的耗散原理,该框架的分析思路对复杂控制情况仍然适用;介绍了展向对吹射流引发的大尺度环流减阻方法,该方法可有效地完成速度条带的卷并,抑制流向涡的生成,减弱近壁湍流强度,在摩擦雷诺数为180的槽道流中可达到最佳约19%的减阻率,实现了通过输入相干能量减小湍流随机耗散的控制目标;展示了结合大尺度环流和壁面吹吸气的复合控制方法的优势,该方法实现了远超单一控制方法的减阻效果,在摩擦雷诺数为180时达到最佳约33%的减阻率和32%的净能量节省率。在前人研究的基础上,本文检验了在含肋壁面上施加大尺度环流控制的复合方案,验证了大尺度环流控制的鲁棒性,发现壁面小肋能够在一定程度上减小大尺度环流二次涡的影响,从而有效提升壁面小肋的减阻效率。
Abstract:Drag reduction in wall flows is of both fundamental and engineering interest. Here, we review the recent developments in the drag reduction strategy and the underlying mechanism. First, the framework for energy flux analysis of drag control is reviewed, which builds up a quantitative relation between the skin-friction coefficient and the dissipation rate. The framework illustrates how the flux of pumping power and control power is distributed and dissipated by coherent, random, and mean fluid motions, applicable for complex control methods as well. Moreover, a specific large-scale control strategy by spanwise opposed wall-jet forcing is introduced, which reduces near-wall random turbulence intensities by merging velocity streaks together and hence suppressing the generation of streamwise vortices. By injecting control power from coherent motions, the spanwise forcing method achieves a maximum drag reduction rate of approximately 19% in the channel flow at a friction Reynolds number of 180. Furthermore, a composite control method combining large-scale control and opposed wall blowing/suction together, yields approximately 33% drag reduction and 32% net power saving at the same Reynolds number, both higher than that of the individual control method. Finally, we show that applying the large-scale control over riblets, the control efficacy is much higher than that of the riblets alone, hence demonstrating the robustness of the large-scale control method.
-
-
-
[1] ABBAS A, BUGEDA G, FERRER E, et al. Drag reduction via turbulent boundary layer flow control[J]. Science China Technological Sciences, 2017, 60(9): 1281–1290. doi: 10.1007/s11431-016-9013-6
[2] RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[J]. Progress in Aerospace Sciences, 2021, 123: 100713. doi: 10.1016/j.paerosci.2021.100713
[3] GOLDSTEIN D, HANDLER R, SIROVICH L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J]. Journal of Fluid Mechanics, 1995, 302: 333–376. doi: 10.1017/S0022112095004125
[4] WALSH M J. Drag characteristics of V-groove and transverse curvature riblets[M]//Viscous Flow Drag Reduc-tion. New York: AIAA, 1980: 168-184. doi: 10.2514/5.9781600865466.0168.0184
[5] WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//Proceedings of the 20th Aerospace Sciences Meeting. 1982. doi: 10.2514/6.1982-169
[6] BECHERT D W, BARTENWERFER M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206: 105–129. doi: 10.1017/s0022112089002247
[7] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59–87. doi: 10.1017/S0022112096004673
[8] CUI G Y, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2433–2442. doi: 10.1016/j.cja.2019.04.023
[9] 常跃峰, 姜楠, 夏振炎, 等. 沟槽壁湍流减阻机理的氢气泡流动显示及数字图像分析[J]. 天津大学学报, 2009, 42(9): 839–844. DOI: 10.3969/j.issn.0493-2137.2009.09.014 CHANG Y F, JIANG N, XIA Z Y, et al. Hydrogen bubble flow visualization and digital image analysis for drag reduction mechanism in wall turbulence with groove-riblet surface[J]. Journal of Tianjin University, 2009, 42(9): 839–844. doi: 10.3969/j.issn.0493-2137.2009.09.014
[10] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503–539. doi: 10.1017/s0022112093002575
[11] CHU D C, KARNIADAKIS G E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250: 1–42. doi: 10.1017/s0022112093001363
[12] GARCÍA-MAYORAL R, JIMÉNEZ J. Hydrodynamic stability and breakdown of the viscous regime over riblets[J]. Journal of Fluid Mechanics, 2011, 678: 317–347. doi: 10.1017/jfm.2011.114
[13] LI W P, LIU H. Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces[J]. Acta Mechanica Sinica, 2019, 35(3): 457–471. doi: 10.1007/s10409-018-0828-2
[14] LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology, 2020, 104: 106003. doi: 10.1016/j.ast.2020.106003
[15] MODESTI D, ENDRIKAT S, HUTCHINS N, et al. Dispersive stresses in turbulent flow over riblets[J]. Journal of Fluid Mechanics, 2021, 917: A55. doi: 10.1017/jfm.2021.310
[16] YAO J, CHEN X, HUSSAIN F. Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows[J]. Physics of Fluids, 2019, 31(8): 085108. doi: 10.1063/1.5111651
[17] MARUSIC I, CHANDRAN D, ROUHI A, et al. An energy-efficient pathway to turbulent drag reduction[J]. Nature Communications, 2021, 12: 5805. doi: 10.1038/s41467-021-26128-8
[18] CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75–110. doi: 10.1017/s0022112094000431
[19] DENG B Q, XU C X. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence[J]. Journal of Fluid Mechanics, 2012, 710: 234–259. doi: 10.1017/jfm.2012.361
[20] XIA Q J, HUANG W X, XU C X, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control[J]. Fluid Dynamics Research, 2015, 47(2): 025503. doi: 10.1088/0169-5983/47/2/025503
[21] YAO J, HUSSAIN F. Drag reduction via opposition control in a compressible turbulent channel[J]. Physical Review Fluids, 2021, 6(11): 114602. doi: 10.1103/PhysRevFluids.6.114602
[22] JI Y, YAO J, HUSSAIN F, et al. Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing[J]. Physics of Fluids, 2021, 33(9): 095112. doi: 10.1063/5.0062937
[23] YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601
[24] YAO J, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics, 2018, 852: 678–709. doi: 10.1017/jfm.2018.553
[25] CHEN X, YAO J, HUSSAIN F. Theoretical framework for energy flux analysis of channels under drag control[J]. Physical Review Fluids, 2021, 6: 013902. doi: 10.1103/physrevfluids.6.013902
[26] CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
[27] WONG C W, ZHOU Y, LI Y Z, et al. Active drag reduction in a turbulent boundary layer based on plasma-actuator-generated streamwise vortices[C]//Proceeding of the 9th International Symposium on Turbulence and Shear Flow Phenomena. 2015.
[28] 张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48–58. DOI: 10.11729/syltlx20230027 ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027
[29] LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6
[30] IUSO G, ONORATO M, SPAZZINI P G, et al. Wall turbulence manipulation by large-scale streamwise vortices[J]. Journal of Fluid Mechanics, 2002, 473: 23–58. doi: 10.1017/s0022112002002574
[31] YAO J, CHEN X, HUSSAIN F. Composite active drag control in turbulent channel flows[J]. Physical Review Fluids, 2021, 6(5): 054605. doi: 10.1103/physrevfluids.6.054605
[32] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73–L76. doi: 10.1063/1.1516779
[33] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339–367. doi: 10.1017/jfm.2016.12
[34] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101–123. doi: 10.1017/jfm.2019.499
[35] XIE F, PÉREZ-MUÑOZ J D, QIN N, et al. Drag reduction in wall-bounded turbulence by synthetic jet sheets[J]. Journal of Fluid Mechanics, 2022, 941: A63. doi: 10.1017/jfm.2022.347
[36] SCHOPPA W, HUSSAIN F. A large-scale control strategy for drag reduction in turbulent boundary layers[J]. Physics of Fluids, 1998, 10(5): 1049–1051. doi: 10.1063/1.869789
[37] THOMAS F, CORKE T, HUSSAIN F, et al. Turbulent boundary layer drag reduction by active control of streak transient growth[C]//Proc of the APS Division of Fluid Dynamics Meeting Abstracts. 2016.
[38] 王晋军. 沟槽面湍流减阻研究综述[J]. 北京航空航天大学学报, 1998, 24(1): 31–34. DOI: 10.13700/j.bh.1001-5965.1998.01.040 WANG J J. Reviews and prospects in turbulent drag reduction over riblets surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 31–34. doi: 10.13700/j.bh.1001-5965.1998.01.040