风沙流环境地表剪切力测量

黄宁, 杨博, 何畏, 张洁

黄宁, 杨博, 何畏, 等. 风沙流环境地表剪切力测量[J]. 实验流体力学, 2023, 37(5): 93-100. DOI: 10.11729/syltlx20230074
引用本文: 黄宁, 杨博, 何畏, 等. 风沙流环境地表剪切力测量[J]. 实验流体力学, 2023, 37(5): 93-100. DOI: 10.11729/syltlx20230074
HUANG N, YANG B, HE W, et al. Measurement of wall shear stress in wind-blown sand environment[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 93-100. DOI: 10.11729/syltlx20230074
Citation: HUANG N, YANG B, HE W, et al. Measurement of wall shear stress in wind-blown sand environment[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 93-100. DOI: 10.11729/syltlx20230074

风沙流环境地表剪切力测量

详细信息
    作者简介:

    黄宁: (1964—),男,辽宁沈阳人,教授。研究方向:近地表风沙、风雪两相流的理论建模、数值模拟及实验观测。通信地址:兰州市城关区天水路222号兰州大学城关校区土木工程与力学学院(730013)。E-mail:huangn@lzu.edu.cn

    通讯作者:

    张洁: E-mail:zhang-j@lzu.edu.cn

  • 中图分类号: O359;O368

Measurement of wall shear stress in wind-blown sand environment

  • 摘要: 地表剪切力是风沙运动的关键驱动力,在风沙运动研究中非常重要,但目前针对风沙流环境地表剪切力的实验测量却较为匮乏,已经成为风沙运动研究深入发展的瓶颈。本文介绍了一种基于热膜技术的适用于风沙流环境地表剪切力精确测量的方法,使用热膜传感器和二维热线探头对净风条件下的地表剪切力进行了测量,结果显示:热膜传感器对地表剪切力有较好的响应,其与二维热线探头对摩阻风速的测量结果相差小于6.6%。热膜传感器对方柱绕流条件下地表剪切力的测量结果与OpenFOAM数值模拟结果具有较好的一致性,进一步证明了热膜传感器测量地表剪切力的可行性。热膜传感器的沙粒撞击实验结果表明:沙粒撞击对热膜信号的影响可以忽略,在风沙流环境中可以采用热膜传感器对地表剪切力进行有效测量。基于该技术测量了风沙流环境地表剪切力沿流向的空间分布特征,采用实测方式获得了风沙流环境地表剪切力的空间分布规律。
    Abstract: As a key driving force of aeolian sand movement, wall shear stress is of importance in the study of aeolian sand movement. However, at present, the experimental measurement of the surface shear force in the wind-blown sand environment is extremely scarce, which has become a bottleneck for the further development of the wind-blown sand research. This paper introduces a method based on the hot-film technology for accurate measurement of the wall shear stress in the wind-blown sand environment. The wall shear stress was measured under conditions without sand using hot-film probes and two-dimensional hot-wire probes, respectively. The result shows that the hot-film probe has a good response to the wall shear stress, and the difference between the measurement results of the friction velocity of these two probes is less than 6.6%. The measurement results of the hot-film probe for the wall shear stress of flow around the square column are in good agreement with the OpenFOAM numerical simulation results, which further proves the effectiveness of the hot-film probe for the measurement of the wall shear stress. In addition, the particle impact test results of the hot film probes show that the influence of particle impact on the hot-film signal is negligible, so the hot-film probe can be used to effectively measure the wall shear stress in the wind-blown sand environment. Based on this technology, the spatial distribution characteristics of the wall shear stress along the flow direction in the wind-blown sand environment were tested. And for the first time, the spatial distribution of the wall shear stress in the wind-blown sand environment was obtained by means of actual measurement. In view of the high-frequency response capability of the hot-film probe, this technology will play an important role in the experimental research on the mechanism of aeolian sand movement in the turbulent boundary layer.
  • 图  2   实验布置图

    Fig.  2   Experimental setup

    图  1   热膜装置

    Fig.  1   Illustration of hot-film

    图  3   不同风速下热膜传感器的标定结果

    Fig.  3   Calibration results of hot-film probes at different velociies

    图  4   热膜传感器与二维热线探头测量结果对比

    Fig.  4   Comparison of hot-wire and hot-film probe

    图  5   沙粒撞击对热膜传感器测量结果的影响

    Fig.  5   Effect of particle impact on measurement results of hot-film probe

    图  6   方柱绕流实验布置图

    Fig.  6   Experimental setup of flow around a square column

    图  7   数值模拟网格

    Fig.  7   Grid division of numerical simulation

    图  8   数值模拟中的地表剪切力分布

    Fig.  8   Spatial distribution of wall shear stress in numerical simulation

    图  9   实验得到的方柱绕流摩阻风速与数值模拟结果对比

    Fig.  9   Comparison between wind tunnel experiment and numerical simulation results of the friction velocity of flow behind a square column

    图  10   风沙流环境地表剪切力测量风洞实验示意图

    Fig.  10   Schematic of measurement of wall shear stress in wind-blown environment

    图  11   地表剪切力随流向位置的变化

    Fig.  11   Variation of wall shear stress with flow direction position

  • [1]

    DUPONT S, BERGAMETTI G, MARTICORENA B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7109–7128. doi: 10.1002/jgrd.50528

    [2]

    BAGNOLD R A. The physics of blown sand and desert dunes[M]. New York: W. Morrow & company, 1941.

    [3]

    AGOSTINI L, LESCHZINER M. The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at Reτ ≈ 1000[J]. Journal of Fluid Mechanics, 2019, 871: 22–51. doi: 10.1017/jfm.2019.297

    [4]

    DUAN Y C, ZHONG Q, WANG G Q, et al. Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2021, 918: A40. doi: 10.1017/jfm.2021.236

    [5]

    JACOB C, ANDERSON W. Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes[J]. Boundary-Layer Meteo-rology, 2017, 162(1): 21–41. doi: 10.1007/s10546-016-0183-4

    [6]

    RICHTER D H, SULLIVAN P P. Modification of near-wall coherent structures by inertial particles[J]. Physics of Fluids, 2014, 26(10): 103304. doi: 10.1063/1.4900583

    [7]

    RANA S, ANDERSON W, DAY M. Turbulence-based model for subthreshold aeolian saltation[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088050. doi: 10.1029/2020GL088050

    [8]

    LI G, ZHANG J, HERRMANN H J, et al. Study of aerodynamic grain entrainment in aeolian transport[J]. Geophysical Research Letters, 2020, 47(11): e2019GL086574. doi: 10.1029/2019GL086574

    [9]

    COMOLA F, KOK J F, CHAMECKI M, et al. The intermittency of wind-driven sand transport[J]. Geophysical Research Letters, 2019, 46(22): 13430–13440. doi: 10.1029/2019GL085739

    [10]

    YIN X, JIANG C, SHAO Y P, et al. Large-eddy-simulation study on turbulent particle deposition and its dependence on atmospheric-boundary-layer stability[J]. Atmospheric Che-mistry and Physics, 2022, 22(7): 4509–4522. doi: 10.5194/acp-22-4509-2022

    [11]

    TAN L H, AN Z S, ZHANG K, et al. Intermittent aeolian saltation over a Gobi surface: threshold, saltation layer height, and high-frequency variability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1): e2019JF005329. doi: 10.1029/2019JF005329

    [12]

    ZHENG X J, JIN T, WANG P. The influence of surface stress fluctuation on saltation sand transport around threshold[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(5): e2019JF005246. doi: 10.1029/2019JF005246

    [13]

    KAWAMURA R. Study on sand movement by wind[J]. Annual Report Institute Science and Technology, 1951, 5(3): 95–112.

    [14]

    LETTAU K. Experimental and micro-meteorological field studies of dune migration[M]. LETTAU H H, LETTAU K, Exploring in the World's driest climate. Madison: University of Wisconsin-Madison, 1978: 110-147.

    [15]

    SØRENSEN M. On the rate of aeolian sand transport[J]. Geomorphology, 2004, 59(1-4): 53–62. doi: 10.1016/j.geomorph.2003.09.005

    [16]

    SLINN W G N. Predictions for particle deposition to vegetative canopies[J]. Atmospheric Environment (1967), 1982, 16(7): 1785–1794. doi: 10.1016/0004-6981(82)90271-2

    [17]

    ZHANG J, SHAO Y. A new parameterization of particle dry deposition over rough surfaces[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12429–12440. doi: 10.5194/acp-14-12429-2014

    [18]

    PRESTON J H. The determination of turbulent skin friction by means of pitot tubes[J]. The Journal of the Royal Aeronautical Society, 1954, 58(518): 109–121. doi: 10.1017/s0368393100097704

    [19]

    IRWIN H P A H. A simple omnidirectional sensor for wind-tunnel studies of pedestrian-level winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7(3): 219–239. doi: 10.1016/0167-6105(81)90051-9

    [20]

    FAGE A, FALKNER V M. On the relation between heat transfer and surface friction for laminar flow[R]. Aeronautical Research Communications Report Memoran-dum, Report No. 1408, 1931.

    [21]

    LUDWIEG H. Instrument for measuring the wall shearing stress of turbulent boundary layers[R]. NACA Technical Memorandum 1284, 1950.

    [22]

    LIEPMANN H W, SKINNER G T. Shearing-stress measurements by use of a heated element[R]. NACA Technical Note 3268, 1954.

    [23]

    BELLHOUSE B J, SCHULTZ D L. The measurement of fluctuating skin friction in air with heated thin-film gauges[J]. Journal of Fluid Mechanics, 1968, 32(4): 675–680. doi: 10.1017/s0022112068000959

    [24]

    SUN B Y, WANG P B, LUO J, et al. A flexible hot-film sensor array for underwater shear stress and transition measurement[J]. Sensors, 2018, 18(10): 3469. doi: 10.3390/s18103469

    [25]

    WALTER B, GROMKE C, LEONARD K, et al. Spatially resolved skin friction velocity measurements using Irwin sensors: A calibration and accuracy analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106: 314–321. doi: 10.1016/j.jweia.2012.02.018

    [26]

    SHAO Y P, LU H. A simple expression for wind erosion threshold friction velocity[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D17): 22437–22443. doi: 10.1029/2000JD900304

图(11)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  103
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-07-17
  • 录用日期:  2023-07-23
  • 网络出版日期:  2023-11-05
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭