Investigation on performance enhancement of flap based on dual synthetic jets
-
摘要: 飞机在起降和大机动过程中,襟翼偏角过大会导致襟翼上方出现流动分离,从而使舵面效率降低甚至失效。为有效解决舵效问题,提出了一种基于合成双射流的襟翼舵效增强技术,针对无缝襟翼,探究了合成双射流不同控制参数对升力、舵效的影响规律。研究结果表明:合成双射流能在襟翼表面形成周期性涡结构,增强边界层底部低速流体与主流的动量交换,提高边界层抗逆压梯度的能力;襟翼处合成双射流可有效提高升力、增强舵效;当合成双射流无量纲驱动频率为3.89、动量系数为3.01 × 10–3时,舵效增强效果最好。此外,还设计、制作了合成双射流激励器与机翼一体化模型,并开展了飞行试验,可实现的滚转角速度达15.69 (°)/s,验证了合成双射流增强舵效的可行性和有效性。Abstract: When the aircraft is in the process of taking off, landing and flexible maneuvering, flow separation occurs above the flap and rudder which is caused by the large deflection angle. It reduces the performance of the flap and rudder, or even makes them ineffective. In order to solve this problem, a performance enhancement technology of flap based on array dual synthetic jets was proposed. Aiming at seamless flap, the influence of different dual synthetic jets driving parameters on the lift force and flap performance was investigated. The investigation results show that the dual synthetic jets can generate periodic vortex structures above the flap surface, which enhanced the momentum exchange between the low-velocity air in the boundary layer and the main flow. These vortex structures can also strengthen the ability of the boundary layer to resist the adverse pressure gradient. The array dual synthetic jets at the flap can effectively increase the lift force and enhance the flap performance. The flap performance enhancement is more effective when the dimensionless driving frequency is 3.89 and the momentum coefficient is 3.01 × 10–3. The integrated model of the array dual synthetic jets actuator combined with the wing was designed and fabricated, and the flight test was carried out. The rolling angular velocity could achieve 15.69 (°)/s, which verifies the feasibility and effectiveness of performance enhancement of flap based on dual synthetic jets.
-
-
表 1 不同网格下的升、阻力系数
Table 1 Lift and drag coefficients with different number of grids
网格数 CL CD 60000 1.4589 0.1449 80000 1.5115 0.1517 150000 1.5119 0.1527 -
[1] HUANG L, MAESTRELLO L, BRYANT T. Separation control over an airfoil at high angles of attack by sound emanating from the surface[C]//Proc of 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. 1987. doi: 10.2514/6.1987-1261
[2] SERFERT A, BACHAR T, KOSS D, et al. Oscillatory blowing: A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 31(11): 2052–2060. doi: 10.2514/3.49121
[3] LATUNIA G P, RONALD D J. Overview of active flow control at NASA Langley Research Center[C]//Proc of Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies. 1998. doi: 10.1117/12.310635
[4] 焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2): 20–24. DOI: 10.3969/j.issn.1672-9897.2008.02.004 JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 20–24. doi: 10.3969/j.issn.1672-9897.2008.02.004
[5] 白俊强, 辛亮, 刘南, 等. 分布式零质量射流控制增升装置分离的数值模拟[J]. 西北工业大学学报, 2014, 32(02): 188–194. DOI: 10.3969/j.issn.1000-2758.2014.02.006 BAI J Q, XIN L, LIU N, et al. Numerical simulation of separation control for high lift system using distributed zero-net mass flux jet[J]. Journal of Northwestern Polytechnical University, 2014, 32(02): 188–194. doi: 10.3969/j.issn.1000-2758.2014.02.006
[6] 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37–48. WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37–48.
[7] 史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究[J]. 航空工程进展, 2022, 13(01): 28–41. DOI: 10.16615/j.cnki.1674-8190.2022.01.03 SHI Z J, XU H Y, GUO R J, et al. Application research of flow control using co-flow jet on a vertical tail[J]. Advances in Aeronautical Science and Engineering, 2022, 13(01): 28–41. doi: 10.16615/j.cnki.1674-8190.2022.01.03
[8] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281–2297. doi: 10.1063/1.869828
[9] CROOK A, SADRI A, WOOD N. The development and implementation of synthetic jets for the control of separated flow[C]//Proc of Applied Aerodynamics Conference. 1999. doi: 10.2514/6.1999-3176
[10] RYAN H, YOGEN U, RAJAT M, et al. Formation Criterion for Synthetic Jets[J]. AIAA Journal, 2005, 43(10): 2110–2116. doi: 10.2514/1.12033
[11] KONDOR S, AMITAY M, PAREKH D, et al. Active flow control application on a mini ducted fan UAV[C]//Proc of 19th AIAA Applied Aerodynamics Conference. 2001. doi: 10.2514/6.2001-2440
[12] AMITAY M, PITT D, GLEZER A. Separation control in duct flows[J]. Journal of Aircraft, 2002, 39(4): 616–620. doi: 10.2514/2.2973
[13] RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: no sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-71
[14] RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: non-zero sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-2657
[15] RATHAY N W, BOUCHER M J, AMITAY M, et al. Application of synthetic jets to enhance the performance of a vertical tail[J]. SAE International Journal of Aerospace, 2013, 6(1): 169–179. doi: 10.4271/2013-01-2284
[16] BRANT H M, BRIAN R S, DAVID M, et al. Synthetic jet flow separation control for thin wing fighter aircraft[C]//Proc of 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition (Disc 1). 2009. doi: 10.2514/10.2514/6.2009-885
[17] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 湖南: 国防科学技术大学, 2006. LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Hunan: National University of Defense Technology, 2006.
[18] LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418–2420. doi: 10.2514/1.20747
[19] LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193–201. doi: 10.1016/S1000-9361(07)60032-6
[20] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264. LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264.
[21] 王林. 合成双射流激励器流场特性及其控制机翼分离流动研究[D]. 湖南: 国防科学技术大学, 2009. WANG L. Flow characteristics of dual synthetic jets actuators and its application on an airfoil separate control[D]. Hunan: National University of Defense Technology, 2009.
[22] 李玉杰. 基于合成双射流的机翼分离流控制及结冰控制研究[D]. 湖南: 国防科学技术大学, 2015. LI Y J. Research on airfoil separate flow control and airfoil icing control using dual synthetic jet actuator[D]. Hunan: National University of Defense Technology, 2015.
[23] 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817–825. LI Y J, LUO Z B, DENG X, et al. Experiment investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jets actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817–825.
[24] SHAHRABI A F. The control of flow separation: Study of optimal open loop parameters[J]. Physics of Fluids, 2019, 31(3): 035104. doi: 10.1063/1.5082945
[25] AHMADI G, MARZOCCA P, JHA R, et al. Active flow control of lifting surface with flap-current activities and future directions[R]. NASA/CP—2010-216112, 2010.