圆箔压力热流计的研制与测试结果分析

朱新新, 杨远剑, 王辉, 李泽禹, 罗跃

朱新新, 杨远剑, 王辉, 等. 圆箔压力热流计的研制与测试结果分析[J]. 实验流体力学, doi: 10.11729/syltlx20230044.
引用本文: 朱新新, 杨远剑, 王辉, 等. 圆箔压力热流计的研制与测试结果分析[J]. 实验流体力学, doi: 10.11729/syltlx20230044.
ZHU X X, YANG Y J, WANG H, et al. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230044.
Citation: ZHU X X, YANG Y J, WANG H, et al. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230044.

圆箔压力热流计的研制与测试结果分析

详细信息
    作者简介:

    朱新新: (1988—),男,云南保山人,硕士,助理研究员。研究方向:气动热与热防护试验测试技术。通信地址:四川省绵阳市二环路南段6号15信箱504分箱(621000)。E-mail:xinxincomplex@126.com

    通讯作者:

    王辉: E-mail:wang_sunshine@163.com

  • 中图分类号: O551.1;V411.7

Development and experimental analysis of circular foil pressure-heat flux gage

  • 摘要: 针对长时间变轨道试验的热流测量需求,基于传统戈登计发展了一种可同时测量热流和压力的圆箔压力热流计。开展了辐射热流标定试验、电弧风洞平板比对试验和数值计算分析。新研制的圆箔压力热流计能够在电弧风洞多状态连续试验中同时同点位测得平板模型表面热流和压力,热流和压力测量重复性精度分别约为3.6%和1.9%;与塞块量热计相比,热流测量值平均偏低约14.7%。其原因在于:对流测量环境中圆箔压力热流计的热流灵敏度系数减小;康铜片温度相对过高,形成局部热点,导致实际进入圆箔压力热流计的热流减小。最后给出了圆箔压力热流计和传统戈登计测量对流热的使用建议。
    Abstract: Based on the demand of heat flux measurement in the continuous test of vehicle changing orbit, the circular foil pressure-heat flux gage that also can get pressure is developed on the basis of the traditional Gardon gage. The thermal radiation calibration test, the different plate comparison tests in the arc-heated wind tunnel, and numerical calculation analysis are carried out. The results show that the new circular foil pressure-heat flux gage can simultaneously get heat flux and pressure at the same point of the plate model in the multistate continuous arc-heated wind tunnel test. Repeatability accuracy of heat flux and pressure measurement are about 3.6% and 1.9% respectively. Compared with the slug calorimeter, the heat flux value measured by the circular foil pressure-heat flux gage is lower than 14.7%. There are two main reasons for the discrepancy. On one hand, the gage sensitivity coefficient decreases in the convective measurement environment; on the other hand, the incident heat flux of the gage decreases because the temperature of the constantan foil is relatively high so that a local hot spot is formed. Finally, some suggestions for the use of the new circular foil pressure-heat flux gage and traditional Gardon gage are given.
  • 图  8   计算模型和State 1的速度云图

    Fig.  8   Numerical calculation model and velocity nephogram of State 1

    图  1   圆箔计结构示意图

    Fig.  1   The structure of circular foil gage

    图  2   圆箔计照片

    Fig.  2   The photo of circular foil gage

    图  3   热流标定曲线

    Fig.  3   Heat flux calibration curve

    图  4   装有圆箔计的水冷平板

    Fig.  4   Water-cooled plate equipped with circular foil gages

    图  5   装有塞块量热计的平板

    Fig.  5   The plate equipped with slug calorimeters

    图  6   电弧风洞平板试验

    Fig.  6   The plate test in arc heated wind tunnel

    图  7   圆箔计的热流和压力曲线

    Fig.  7   Heat flux and pressure curve of circular foil gage

    图  9   压力测量值与计算值对比

    Fig.  9   Pressure measured versus numerical calculation

    图  10   热流测量值与计算值对比

    Fig.  10   Heat flux measured versus numerical calculation

    图  11   康铜片的温度云图

    Fig.  11   Temperature nephogram of constantan foil

    图  12   速度云图

    Fig.  12   Velocity nephogram

    图  13   热流分布

    Fig.  13   Heat flux distribution

    表  1   试验状态参数

    Table  1   Test status parameter

    状态总焓/(kJ·kg−1总压/kPa平板迎角/(°)
    State 130606070
    State 237408830
    State 3382014600
    下载: 导出CSV

    表  2   1#测点测量结果

    Table  2   Measurement results of 1# test point

    状态热流/(kW·m−2 压力/kPa
    Test 1Test 2Test 3 Test 1Test 2Test 3
    State 1 413 427 436 17.5 17.5 17.4
    State 2 718 700 730 25.8 25.5 25.2
    State 3 1086 1064 1144 41.0 40.8 40.3
    下载: 导出CSV

    表  3   不同网格计算结果

    Table  3   Calculation results by different grids

    网格第一层网格
    高度/mm
    平板监测热流/(kW·m−2
    20000步21000步22000步
    Grid 10.01431.1431.1431.1
    Grid 20.0011006.71006.71006.7
    Grid 30.00051012.41012.41012.4
    下载: 导出CSV

    表  4   测量值与计算值对比

    Table  4   Measurement results versus numerical calculation results

    状态平均压力/kPa平均热流/(kW·m−2
    计算值传统压力
    孔测量值
    圆箔计
    测量值
    计算值塞块量热
    计测量值
    圆箔计
    测量值
    State 1 13.39 15.7 15.5 472 447 370
    State 2 20.2 21.4 22.2 817 713 603
    State 3 31.4 36.3 35.8 1213 1062 924
    平均值 21.7 24.4 24.5 834 741 632
    下载: 导出CSV
  • [1]

    CECERE A, SAVINO R, ALLOUIS C, et al. Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions[J]. International Journal of Heat and Mass Transfer, 2015, 91: 747–755. doi: 10.1016/j.ijheatmasstransfer.2015.08.029

    [2] 罗跃, 周玮, 杨鸿, 等. 电弧加热器湍流平板试验流场计算分析[J]. 实验流体力学, 2017, 31(2): 86–92. DOI: 10.11729/syltlx20160088

    LUO Y, ZHOU W, YANG H, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088

    [3] 周凯, 欧东斌, 张仕忠, 等. 热流传感器传热特性电弧风洞实验及数值模拟[J]. 气体物理, 2022, 7(4): 83–90. DOI: 10.19527/j.cnki.2096-1642.0945

    ZHOU K, OU D B, ZHANG S Z, et al. Experimental and numerical simulation of heat transfer characteristics for heat flux sensors in arc heated wind tunnels[J]. Physics of Gases, 2022, 7(4): 83–90. doi: 10.19527/j.cnki.2096-1642.0945

    [4]

    ZHOU W X, WANG D, BAO W, et al. Experimental method study on heat flux measurement on sharp leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(11): 2055–2065. doi: 10.1177/0954410013513567

    [5] 杨鸿, 罗跃, 吴东, 等. 电弧加热器超声速湍流平板烧蚀流场变化研究[J]. 实验流体力学, 2018, 32(4): 72–77. DOI: 10.11729/syltlx20170181

    YANG H, LUO Y, WU D, et al. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72–77. doi: 10.11729/syltlx20170181

    [6]

    NAWAZ A, SANTOS J A. Assessing calorimeter evaluation methods in convective and radiative heat flux Environment[C]// Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4905

    [7]

    NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Proc of the 43rd AIAA Thermophysics Conference. 2012. doi: 10.2514/6.2012-3186

    [8] 朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学, 2018, 32(6): 34–40. DOI: 10.11729/syltlx20180071

    ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071

    [9] 陈德江, 王国林, 曲杨, 等. 气动热试验中稳态热流测量技术研究[J]. 实验流体力学, 2005, 19(1): 75–78. DOI: 10.3969/j.issn.1672-9897.2005.01.015

    CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015

    [10] 朱新新, 李泽禹, 赵文峰, 等. 水卡量热计的流热耦合模拟研究及试验分析[J]. 实验流体力学, 2022, 36(6): 83–88. DOI: 10.11729/syltlx20210011

    ZHU X X, LI Z Y, ZHAO W F, et al. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83–88. doi: 10.11729/syltlx20210011

    [11] 王辉, 杨凯, 杨庆涛, 等. 一种基于非稳态传热模型的新型热流传感器: CN108871599A[P]. 2018-11-23.

    WANG H, YANG K, YANG Q T, et al. Novel heat flux sensor based on unsteady state heat transfer model: CN108871599A[P]. 2018-11-23.

    [12]

    GARDON R. An instrument for the direct measurement of intense thermal radiation[J]. Review of Scientific Instruments, 1953, 24(5): 366–370. doi: 10.1063/1.1770712

    [13]

    STATHOPOULOS P, HOFMANN F, ROTHENFLUH T, et al. Calibration of a Gardon sensor in a high-temperature high heat flux stagnation facility[J]. Experimental Heat Transfer, 2012, 25(3): 222–237. doi: 10.1080/08916152.2011.609631

    [14]

    FU T R, ZONG A Z, ZHANG Y R, et al. A method to measure heat flux in convection using Gardon gauge[J]. Applied Thermal Engineering, 2016, 108: 1357–1361. doi: 10.1016/j.applthermaleng.2016.07.164

    [15]

    PURPURA C, TRIFONI E, PETRELLA O, et al. Gardon gauge heat flux sensor verification by new working facility[J]. Measurement, 2019, 134: 245–252. doi: 10.1016/j.measurement.2018.10.076

    [16] 罗跃, 杨凯, 黄伟, 等. 用于高温高压剪切流场的Gardon计研制[J]. 科学技术与工程, 2017, 17(29): 139–144. DOI: 10.3969/j.issn.1671-1815.2017.29.020

    LUO Y, YANG K, HUANG W, et al. Design and fabrication of Gardon gage used in shear flow filed of high temperature/pressure[J]. Science Technology and Engineering, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020

    [17] 朱新新, 王辉, 彭海波, 等. 一种高辐照度热流传感器标定装置: CN213422482U[P]. 2021-06-11.

    ZHU X X, WANG H, PENG H B, et al. Calibration device for high-irradiance heat flow sensor: CN213422482U[P]. 2021-06-11.

    [18]

    MURTHY A V, TSAI B K, SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2): 293–305. doi: 10.6028/jres.105.033

    [19] 朱新新, 王辉, 杨庆涛, 等. 弧光灯热流标定系统的光学设计[J]. 光学学报, 2016, 36(11): 1122001. DOI: 10.3788/AOS201636.1122001

    ZHU X X, WANG H, YANG Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica, 2016, 36(11): 1122001. doi: 10.3788/AOS201636.1122001

    [20]

    ASTM Committees. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM E637-22[S]. West Conshohocken, PA, United States: ASTM International, 2022. doi: 10.1520/E0637-22

    [21] 朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11. DOI: 10.11823∕j.issn.1674-5795.2018.05.02

    ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11. doi: 10.11823∕j.issn.1674-5795.2018.05.02

图(13)  /  表(4)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  68
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2023-06-07
  • 录用日期:  2023-06-14
  • 网络出版日期:  2023-08-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭