Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight
-
摘要: 为推进前体非对称涡流动控制方法在飞行器大迎角飞行控制方面的应用,提出并发展了一种基于双合成射流的前体非对称涡控制技术。研发了一套机载型双合成射流控制装置及模型自由飞验证机,通过风洞半自由飞及模型自由飞实验,验证了利用前体非对称涡控制技术实现尾旋改出和大迎角姿态控制的可行性;同时,依靠飞行测控系统和机载压力测量系统,实现飞行器姿态及前体表面压力的同步测量,可对前体非对称涡控制效能进行有效评估。风洞半自由飞实验结果表明:在60°迎角下,双合成射流可有效控制前体非对称涡相对位置,产生偏航力矩,实现大迎角航向操纵。在模型自由飞实验中,该技术可在常规方向舵失效的迎角下实现尾旋改出,可控尾旋角速度达到173 (°)/s;依靠该技术,验证机可在大迎角飞行时进行快速偏航操控,由控制输入到偏航角速度改变的时滞小于0.5 s。Abstract: In order to apply the forebody vortex flow control method to high Angle of Attack (AoA) flight control of the aircraft, an asymmetric vortex control technique based on the Alternating Synthetic Jet (ASJ) flow was proposed and developed. A set of airborne alternating synthetic jet control device and a free flight verification model aircraft were developed. The feasibility of using the forebody vortex control method to realize tail spin out and high Angle of Attack attitude control was verified by semi-free flight in the wind tunnel and model free flight in open airspace. Meanwhile, by means of the flight measurement and control system and the airborne pressure measurement system, the aircraft attitude, vortex position and body surface pressure can be measured synchronously, which can effectively evaluate the efficiency of the vortex control technology. Wind tunnel semi-free flight test results show that the alternating synthetic jet can effectively control the relative position of the forebody vortices at 60° Angle of Attack, which can generate yaw moment and realize heading control at high Angle of Attack. In the flight test, the technology can realize the change of tail spin under the failure of conventional rudder, and the controllable tail spin angular velocity can reach 173 (°)/s. Based on this technology, the verification model aircraft can perform fast yaw control when flying at high Angle of Attack, and the time delay from control input to yaw angular velocity change is less than 0.5 seconds.
-
-
表 1 基于双合成射流的前体非对称涡控制验证机总体参数
Table 1 The parameters of the verification model aircraft based on the ASJ forebody asymmetric vortex control technology
参数名称 参数值 翼展 1.2 m 实际起飞重量 3.5 kg 偏航转动惯量(Izz) 0.525 kg·m2 表 2 双合成射流激励器控制参数
Table 2 The parameters of the Alternating Synthetic Jet
参数名称 参数值 激励器质量 57.1 g 激励器尺寸 直径36 mm,长90 mm 喷口面积(2个孔合计) 8 mm2 激励波形 方波 激励频率 175 Hz 供电电压 12 V 最大功耗 1.3 W 射流最大时均速度 17 m/s 表 3 机载压力测量系统参数
Table 3 The parameters of the airborne pressure measurement
参数名称 参数值 重量 80 g 尺寸 120 mm × 50 mm × 20 mm 测压精度 0.01 FS 量程 ± 500 Pa 表 4 侧向力与特征截面周向压力积分的Pearson相关性系数
Table 4 Pearson correlation coefficient between side force and circumferential pressure integral of characteristic section
迎角范围 相关性系数 0°~15° 0.64 20°~35° 0.94 40°~65° 0.92 70°~85° 0.69 -
[1] MALCOLM G. Forebody vortex control - A progress review[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3540
[2] WILLIAMS D, WILLIAMS D. A review of forebody vortex control scenarios[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-1967
[3] 翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报, 2017, 35(3): 354–367. DOI: 10.7638/kqdlxxb-2017.0018 ZHAI J, ZHANG W W, WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica, 2017, 35(3): 354–367. doi: 10.7638/kqdlxxb-2017.0018
[4] REDING J P, ERICSSON L E. Maximum vortex-induced side force[J]. Journal of Spacecraft and Rockets, 1978, 15(4): 201–207. doi: 10.2514/3.57306
[5] ZILLIAC G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. doi: 10.2514/6.1990-388
[6] 闻静, 王延奎, 邓学蓥. 前体边条控制技术对航向静稳定性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2180–2188. DOI: 10.13700/j.bh.1001-5965.2015.0746 WEN J, WANG Y K, DENG X Y. Effect of forebody strake control technology on static directional stability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2180–2188. doi: 10.13700/j.bh.1001-5965.2015.0746
[7] 王元靖, 范召林, 侯跃龙, 等. 粗糙带对细长体大迎角流动非对称性的影响[J]. 空气动力学学报, 2005, 23(3): 284–288,316. DOI: 10.3969/j.issn.0258-1825.2005.03.004 WANG Y J, FAN Z L, HOU Y L, et al. Effects of grit strip on flow asymmetry over a slender revolution body at high angles of attack[J]. Acta Aerodynamica Sinica, 2005, 23(3): 284–288,316. doi: 10.3969/j.issn.0258-1825.2005.03.004
[8] MURRI D, SHAH G, DICARLO D, et al. Actuated forebody strake controls for the F-18 high alpha research vehicle[C]//Proc of the Flight Simulation and Technologies. 1993. doi: 10.2514/6.1993-3675
[9] 邓学蓥. 非对称涡流动特性和主动控制及其应用[C]//近代空气动力学研讨会论文集. 2005. [10] 孟轩, 陈志敏, 徐敏. 细长旋成体单孔微吹气扰动控制的数值研究[J]. 弹道学报, 2008, 20(2): 37–40. MENG X, CHEN Z M, XU M. Numerical study on flow control with single hole microblowing[J]. Journal of Ballistics, 2008, 20(2): 37–40.
[11] 王延奎, 魏占峰, 邓学蓥, 等. 飞机大迎角非对称涡组合扰动主动控制研究[J]. 力学学报, 2007, 39(4): 433–441. DOI: 10.3321/j.issn:0459-1879.2007.04.001 WANG Y K, WEI Z F, DENG X Y, et al. An experimental study on forebody vortex flow control technique using combined perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 433–441. doi: 10.3321/j.issn:0459-1879.2007.04.001
[12] 顾蕴松, 明晓. 大迎角细长体侧向力的比例控制[J]. 航空学报, 2006, 27(5): 746–750. DOI: 10.3321/j.issn:1000-6893.2006.05.003 GU Y S, MING X. Proportional side force control of slender body at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 746–750. doi: 10.3321/j.issn:1000-6893.2006.05.003
[13] 高超, 倪章松, 薛明, 等. 基于新型丝状电极等离子体激励器的前体涡控制[J]. 空气动力学学报, 2021, 39(2): 39–52. DOI: 10.7638/kqdlxxb-2020.0116 GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerody-namica Sinica, 2021, 39(2): 39–52. doi: 10.7638/kqdlxxb-2020.0116
[14] 孟宣市, 郭志鑫, 罗时钧, 等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报, 2010, 31(3): 500–505. MENG X S, GUO Z X, LUO S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 500–505.
[15] KRAMER B, SUAREZ C, MALCOLM G, et al. Forebody vortex control with jet and slot blowing on an F/A-18[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3449
[16] MURRI D G, SHAH G H, DICARLO D J, et al. Actuated forebody strake controls for the F-18 high-alpha research vehicle[J]. Journal of Aircraft, 1995, 32(3): 555–562. doi: 10.2514/3.46755
[17] 明晓. 钝体尾流的特性及控制[D]. 南京: 南京航空航天大学, 1988. [18] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006. [19] ZHANG P F, WANG J J. Novel signal wave pattern for efficient synthetic jet generation[J]. AIAA Journal, 2007, 45(5): 1058–1065. doi: 10.2514/1.25445
[20] LU Y R, WANG J S, WANG J J. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals[J]. Acta Mechanica Sinica, 2022, 38(1): 1–11. doi: 10.1007/s10409-021-09015-x
[21] 李卓奇. 飞行器前体非对称涡双合成射流控制特性研究[D]. 南京: 南京航空航天大学, 2019. [22] 王奇特. 合成射流对静态与动态运动的细长体前体涡流动控制研究[D]. 南京: 南京航空航天大学, 2018. [23] 顾蕴松, 王奇特, 程克明, 等. 一种通过控制前体涡改出尾旋的方法及流动控制激励器: 中国, CN105864232A[P]. 2016-08-17.