双合成射流前体非对称涡控制技术及模型自由飞实验验证

李琳恺, 黄紫, 顾蕴松, 彭振钧, 张宗源, 雷雨

李琳恺, 黄紫, 顾蕴松, 等. 双合成射流前体非对称涡控制技术及模型自由飞实验验证[J]. 实验流体力学, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
引用本文: 李琳恺, 黄紫, 顾蕴松, 等. 双合成射流前体非对称涡控制技术及模型自由飞实验验证[J]. 实验流体力学, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
Citation: LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042

双合成射流前体非对称涡控制技术及模型自由飞实验验证

基金项目: 南京航空航天大学青年教师启动基金项目;中央高校基本科研业务费专项资金项目(NS2022013);江苏高校优势学科建设工程资助项目
详细信息
    作者简介:

    李琳恺: (1989—),男,广东佛山人,博士,讲师。研究方向:先进流体流动测试技术,智能流动感知与流动控制技术。通信地址:江苏省南京市秦淮区御道街29号(210016)。E-mail:linkaili@nuaa.edu.cn

    通讯作者:

    顾蕴松: E-mail:yunsonggu@nuaa.edu.cn

  • 中图分类号: V211.7

Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight

  • 摘要: 为推进前体非对称涡流动控制方法在飞行器大迎角飞行控制方面的应用,提出并发展了一种基于双合成射流的前体非对称涡控制技术。研发了一套机载型双合成射流控制装置及模型自由飞验证机,通过风洞半自由飞及模型自由飞实验,验证了利用前体非对称涡控制技术实现尾旋改出和大迎角姿态控制的可行性;同时,依靠飞行测控系统和机载压力测量系统,实现飞行器姿态及前体表面压力的同步测量,可对前体非对称涡控制效能进行有效评估。风洞半自由飞实验结果表明:在60°迎角下,双合成射流可有效控制前体非对称涡相对位置,产生偏航力矩,实现大迎角航向操纵。在模型自由飞实验中,该技术可在常规方向舵失效的迎角下实现尾旋改出,可控尾旋角速度达到173 (°)/s;依靠该技术,验证机可在大迎角飞行时进行快速偏航操控,由控制输入到偏航角速度改变的时滞小于0.5 s。
    Abstract: In order to apply the forebody vortex flow control method to high Angle of Attack (AoA) flight control of the aircraft, an asymmetric vortex control technique based on the Alternating Synthetic Jet (ASJ) flow was proposed and developed. A set of airborne alternating synthetic jet control device and a free flight verification model aircraft were developed. The feasibility of using the forebody vortex control method to realize tail spin out and high Angle of Attack attitude control was verified by semi-free flight in the wind tunnel and model free flight in open airspace. Meanwhile, by means of the flight measurement and control system and the airborne pressure measurement system, the aircraft attitude, vortex position and body surface pressure can be measured synchronously, which can effectively evaluate the efficiency of the vortex control technology. Wind tunnel semi-free flight test results show that the alternating synthetic jet can effectively control the relative position of the forebody vortices at 60° Angle of Attack, which can generate yaw moment and realize heading control at high Angle of Attack. In the flight test, the technology can realize the change of tail spin under the failure of conventional rudder, and the controllable tail spin angular velocity can reach 173 (°)/s. Based on this technology, the verification model aircraft can perform fast yaw control when flying at high Angle of Attack, and the time delay from control input to yaw angular velocity change is less than 0.5 seconds.
  • 图  1   机头边条安装示意图及实物[16]

    Fig.  1   Installation diagram and object of the head strake[16]

    图  2   基于双合成射流的前体非对称涡控制验证机系统构成

    Fig.  2   The system of the verification model aircraft based on the ASJ forebody asymmetric vortex control technology

    图  3   双合成射流激励器原理示意及实物

    Fig.  3   Principle and object of double synthetic jet actuator

    图  4   机载压力测量系统及飞行测控系统安装实物图

    Fig.  4   Airborne pressure measurement and flight control system

    图  5   前体非对称涡控制验证机风洞半自由飞实验平台示意图

    Fig.  5   Schematic diagram of semi-free flight apparatus of model plane based on the ASJforebody asymmetric vortex control technology

    图  6   前体非对称涡控制验证机风洞半自由飞实验平台

    Fig.  6   Semi-free flight apparatus of model plane based on the ASJ forebody asymmetric vortex control technology

    图  7   前体非对称涡产生偏航力矩原理示意

    Fig.  7   Principle of yaw moment generated by forebody asymmetric vortex

    图  8   不同输入信号下特征截面的平均速度分布

    Fig.  8   The average velocity distribution results of the characteristic section of the forebody under different input signals

    图  9   不同前体非对称涡模态下空间流场、侧向力方向、表面压力分布

    Fig.  9   Comparison of flow field, side force and surface pressure under different forebody asymmetric vortex modes

    图  10   风洞半自由飞输入信号、特征截面周向压力积分与偏航角加速度

    Fig.  10   The input signal, the circumferential pressure integral of the characteristic section and the yaw angle acceleration of the semi-free flight in the wind tunnel

    图  11   双向尾旋改出机动的姿态–航迹图

    Fig.  11   Flight attitude and flight path diagram of bidirectional spin recovery maneuver

    图  12   双向尾旋改出机动过程的控制输入与姿态角

    Fig.  12   The control input and attitude angle during bidirectional spin recovery maneuver process

    图  13   双向尾旋改出机动过程的特征截面周向压力积分与偏航角加速度

    Fig.  13   The circumferential pressure integral of the characteristic section and yaw acceleration during bidirectional spin recovery maneuver process

    图  14   大迎角航向机动控制中的输入信号、迎角和偏航角

    Fig.  14   Input signal, angle of attack and yaw angle in high angle of attack heading maneuver control

    图  15   大迎角航向机动控制中的输入信号与偏航角速度

    Fig.  15   Input signal and yaw rate in high angle of attack heading maneuver control

    表  1   基于双合成射流的前体非对称涡控制验证机总体参数

    Table  1   The parameters of the verification model aircraft based on the ASJ forebody asymmetric vortex control technology

    参数名称参数值
    翼展1.2 m
    实际起飞重量3.5 kg
    偏航转动惯量(Izz0.525 kg·m2
    下载: 导出CSV

    表  2   双合成射流激励器控制参数

    Table  2   The parameters of the Alternating Synthetic Jet

    参数名称参数值
    激励器质量57.1 g
    激励器尺寸直径36 mm,长90 mm
    喷口面积(2个孔合计)8 mm2
    激励波形方波
    激励频率175 Hz
    供电电压12 V
    最大功耗1.3 W
    射流最大时均速度17 m/s
    下载: 导出CSV

    表  3   机载压力测量系统参数

    Table  3   The parameters of the airborne pressure measurement

    参数名称参数值
    重量80 g
    尺寸120 mm × 50 mm × 20 mm
    测压精度0.01 FS
    量程 ± 500 Pa
    下载: 导出CSV

    表  4   侧向力与特征截面周向压力积分的Pearson相关性系数

    Table  4   Pearson correlation coefficient between side force and circumferential pressure integral of characteristic section

    迎角范围 相关性系数
    0°~15°0.64
    20°~35° 0.94
    40°~65°0.92
    70°~85°0.69
    下载: 导出CSV
  • [1]

    MALCOLM G. Forebody vortex control - A progress review[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3540

    [2]

    WILLIAMS D, WILLIAMS D. A review of forebody vortex control scenarios[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-1967

    [3] 翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报, 2017, 35(3): 354–367. DOI: 10.7638/kqdlxxb-2017.0018

    ZHAI J, ZHANG W W, WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica, 2017, 35(3): 354–367. doi: 10.7638/kqdlxxb-2017.0018

    [4]

    REDING J P, ERICSSON L E. Maximum vortex-induced side force[J]. Journal of Spacecraft and Rockets, 1978, 15(4): 201–207. doi: 10.2514/3.57306

    [5]

    ZILLIAC G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. doi: 10.2514/6.1990-388

    [6] 闻静, 王延奎, 邓学蓥. 前体边条控制技术对航向静稳定性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2180–2188. DOI: 10.13700/j.bh.1001-5965.2015.0746

    WEN J, WANG Y K, DENG X Y. Effect of forebody strake control technology on static directional stability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2180–2188. doi: 10.13700/j.bh.1001-5965.2015.0746

    [7] 王元靖, 范召林, 侯跃龙, 等. 粗糙带对细长体大迎角流动非对称性的影响[J]. 空气动力学学报, 2005, 23(3): 284–288,316. DOI: 10.3969/j.issn.0258-1825.2005.03.004

    WANG Y J, FAN Z L, HOU Y L, et al. Effects of grit strip on flow asymmetry over a slender revolution body at high angles of attack[J]. Acta Aerodynamica Sinica, 2005, 23(3): 284–288,316. doi: 10.3969/j.issn.0258-1825.2005.03.004

    [8]

    MURRI D, SHAH G, DICARLO D, et al. Actuated forebody strake controls for the F-18 high alpha research vehicle[C]//Proc of the Flight Simulation and Technologies. 1993. doi: 10.2514/6.1993-3675

    [9] 邓学蓥. 非对称涡流动特性和主动控制及其应用[C]//近代空气动力学研讨会论文集. 2005.
    [10] 孟轩, 陈志敏, 徐敏. 细长旋成体单孔微吹气扰动控制的数值研究[J]. 弹道学报, 2008, 20(2): 37–40.

    MENG X, CHEN Z M, XU M. Numerical study on flow control with single hole microblowing[J]. Journal of Ballistics, 2008, 20(2): 37–40.

    [11] 王延奎, 魏占峰, 邓学蓥, 等. 飞机大迎角非对称涡组合扰动主动控制研究[J]. 力学学报, 2007, 39(4): 433–441. DOI: 10.3321/j.issn:0459-1879.2007.04.001

    WANG Y K, WEI Z F, DENG X Y, et al. An experimental study on forebody vortex flow control technique using combined perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 433–441. doi: 10.3321/j.issn:0459-1879.2007.04.001

    [12] 顾蕴松, 明晓. 大迎角细长体侧向力的比例控制[J]. 航空学报, 2006, 27(5): 746–750. DOI: 10.3321/j.issn:1000-6893.2006.05.003

    GU Y S, MING X. Proportional side force control of slender body at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 746–750. doi: 10.3321/j.issn:1000-6893.2006.05.003

    [13] 高超, 倪章松, 薛明, 等. 基于新型丝状电极等离子体激励器的前体涡控制[J]. 空气动力学学报, 2021, 39(2): 39–52. DOI: 10.7638/kqdlxxb-2020.0116

    GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerody-namica Sinica, 2021, 39(2): 39–52. doi: 10.7638/kqdlxxb-2020.0116

    [14] 孟宣市, 郭志鑫, 罗时钧, 等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报, 2010, 31(3): 500–505.

    MENG X S, GUO Z X, LUO S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 500–505.

    [15]

    KRAMER B, SUAREZ C, MALCOLM G, et al. Forebody vortex control with jet and slot blowing on an F/A-18[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3449

    [16]

    MURRI D G, SHAH G H, DICARLO D J, et al. Actuated forebody strake controls for the F-18 high-alpha research vehicle[J]. Journal of Aircraft, 1995, 32(3): 555–562. doi: 10.2514/3.46755

    [17] 明晓. 钝体尾流的特性及控制[D]. 南京: 南京航空航天大学, 1988.
    [18] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.
    [19]

    ZHANG P F, WANG J J. Novel signal wave pattern for efficient synthetic jet generation[J]. AIAA Journal, 2007, 45(5): 1058–1065. doi: 10.2514/1.25445

    [20]

    LU Y R, WANG J S, WANG J J. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals[J]. Acta Mechanica Sinica, 2022, 38(1): 1–11. doi: 10.1007/s10409-021-09015-x

    [21] 李卓奇. 飞行器前体非对称涡双合成射流控制特性研究[D]. 南京: 南京航空航天大学, 2019.
    [22] 王奇特. 合成射流对静态与动态运动的细长体前体涡流动控制研究[D]. 南京: 南京航空航天大学, 2018.
    [23] 顾蕴松, 王奇特, 程克明, 等. 一种通过控制前体涡改出尾旋的方法及流动控制激励器: 中国, CN105864232A[P]. 2016-08-17.
图(15)  /  表(4)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  53
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-04-20
  • 录用日期:  2023-05-18
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭