微型涡流发生器影响下的湍流边界层流场与摩阻特性

张奕, 潘翀, 窦建宇, 张淼

张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
引用本文: 张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
Citation: ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027

微型涡流发生器影响下的湍流边界层流场与摩阻特性

基金项目: 国家自然科学基金项目(91952302,11721202)
详细信息
    作者简介:

    张奕: (1998—),男,辽宁辽阳人,博士研究生。研究方向:湍流与流动控制。通信地址:北京市海淀区学院路37号(100191)。E-mail:zhangyi05@buaa.edu.cn

    通讯作者:

    张淼: E-mail:zhangmiao@comac.cc

  • 中图分类号: V211.7

Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer

  • 摘要: 在中等雷诺数平板湍流边界层中,利用体视粒子图像测速技术与免标定双层热膜摩阻传感器,测量了单排楔形微型涡流发生器阵列下游的速度场与摩阻,以研究微型涡流发生器对湍流统计量和摩阻特性的影响。速度场测量结果表明:微型涡流发生器诱导下游湍流边界层内产生时均流向涡对和时均流向速度亏损区,导致流向脉动速度的展向预乘能谱出现第二外区峰值。速度场本征正交分解的结果表明:微型涡流发生器诱导产生的流动结构与湍流边界层内的大、超大尺度结构的能量贡献相当,并影响了近壁含能结构的空间分布。摩阻测量实验表明:具有较高高度、展向排列更密集的微型涡流发生器阵列的减摩阻率更高,减摩阻效果可持续至下游80倍自身特征高度处。
    Abstract: The present work uses the stereoscopic particle image velocimetry and calibration-free dual hot-film wall shear stress measurement sensor to measure the flowfield and friction at downstream of the one array of forwards wedge Micro Vortex Generator (MVG) in the turbulent boundary layer at moderate Reynolds number. The result of flowfield measurement shows that MVG produces the streamwise velocity defect regions and streamwise vortices pairs in downstream time-averaged flowfield, which causes the second outer-peak in the spanwise pre-multiplied energy spectra. The result of proper orthogonal decomposition shows that the contribution of energy of structures induced by MVG is equivalent to the that of large-scale structures and very large-scale structures in the smooth-wall turbulent boundary layer, which also significantly affects the spatial distribution of the near-wall structures. The friction measurement experiment shows that MVG array with higher height and closer spanwise arrangement has higher friction drag reduction. The drag reduction effect of MVG lasts downstream to 80 times of its own characteristic height.
  • 图  1   低速风洞中实验布置示意图

    Fig.  1   Schematic diagram of the experimental setup in the test section of a low-speed wind tunnel

    图  2   MVG阵列特征尺寸示意图

    Fig.  2   Schematic diagram of MVG array characteristic size

    图  3   光滑壁面工况下SPIV 测量结果与 DNS结果对比

    Fig.  3   The SPIV measurement results are compared with the DNS results under the smooth wall condition

    图  4   摩阻传感器及其测量结果

    Fig.  4   The friction sensor and its measurement results

    图  5   MVG阵列下游的时均速度场

    Fig.  5   Time averaged results of three velocity component fields behind MVG arrays

    图  6   MVG阵列下游的时均流向速度型与雷诺应力的展向平均结果

    Fig.  6   Spanwise average results of wall-normal profiles of time-averaged streamwise velocity and Reynolds stress behind MVG arrays

    图  7   光滑壁面及MVG0下游近、远尾迹区展向预乘能谱

    Fig.  7   Spanwise pre-multiplied energy spectra of smooth-wall and MVG0 arrays

    图  8   光滑壁面及MVG0工况近、远尾迹区POD分解所得各阶模态的能量占比及能量积累曲线

    Fig.  8   Energy ratio of each rank and the cumulative energy of the POD result of smooth-wall case and near- or far-wake regions of MVG0 case

    图  9   光滑壁面及基准MVG0工况近、远尾迹区流场第1、5、10、20阶POD模态的空间基$ {\varPsi }_{i} $(y, z

    Fig.  9   Rank 1, 5, 10 and 20 mode $ {\varPsi }_{i} $(y, z) of POD decomposition results of smooth-wall case and near- or far-wake regions of MVG0 case

    图  10   各型MVG阵列下游减摩阻率的沿程变化

    Fig.  10   Drag reduction in different streamwise stations behind each MVG arrays

    表  1   光滑壁面湍流边界层主要特征参数

    Table  1   Main characteristic parameters of the studied smooth-wall TBL

    U/(m·s−1)δ/cmuτ/(m·s−1)ReτReθHΔy+ Δz+ uτT/δ
    149.980.55345363531.34.5 4.511000
    下载: 导出CSV

    表  2   3种MVG阵列的主要几何参数

    Table  2   Main size of the three MVG array

    模型名称s/mmh/mml/mma/mm
    MVG0052010
    MVGs552010
    MVGh0102010
    下载: 导出CSV
  • [1]

    WANG W K, PAN C, WANG J J. Energy transfer structures associated with large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 906: A14. doi: 10.1017/jfm.2020.777

    [2]

    WANG J J, PAN C, WANG J J. Characteristics of fluctuating wall-shear stress in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Physical Review Fluids, 2020, 5(7): 074605. doi: 10.1103/physrevfluids.5.074605

    [3]

    LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6

    [4]

    CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311

    [5]

    YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601

    [6] 李楠, 吴光辉, 潘翀, 等. 小肋减阻的飞行试验方法、结果和分析[J]. 力学与实践, 2023, 45(1): 10–21.

    LI N, WU G H, PAN C, et al. Flight test method, result and analysis of small rib drag reduction[J]. Mechanics in Engineering, 2023, 45(1): 10–21.

    [7] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2): 129–139, 154.

    LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2): 129–139, 154.

    [8] 李晓辉, 王宏伟, 张淼, 等. Tomo-PIV亚跨声速风洞应用探索[J]. 实验流体力学, 2020, 34(4): 44–52. DOI: 10.11729/syltlx20190061

    LI X H, WANG H W, ZHANG M, et al. Application exploration of Tomo-PIV in the subsonic and transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 44–52. doi: 10.11729/syltlx20190061

    [9] 刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, 2021, 35(1): 117–125. DOI: 10.11729/syltlx20200001

    LIU L X, WANG K J, WANG X W, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117–125. doi: 10.11729/syltlx20200001

    [10] 陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. DOI: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025

    [11]

    PARK J, CHOI H. Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow[J]. Physics of Fluids, 1999, 11(10): 3095–3105. doi: 10.1063/1.870167

    [12]

    DU Y Q, SYMEONIDIS V, KARNIADAKIS G E. Drag reduction in wall-bounded turbulence via a transverse travelling wave[J]. Journal of Fluid Mechanics, 2002, 457: 1–34. doi: 10.1017/s0022112001007613

    [13] 黄红波, 陆芳. 涡流发生器应用发展进展[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(3): 611–614, 618.

    HUANG H B, LU F. Research progress of vortex generator application[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(3): 611–614, 618.

    [14] 刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2): 241–244.

    LIU G, LIU W, MOU B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2): 241–244.

    [15] 倪亚琴. 涡流发生器研制及其对边界层的影响研究[J]. 空气动力学学报, 1995, 13(1): 110–116.

    NI Y Q. Development of the vortex-generator and study on the effect of vortex-generator on boundary layer[J]. Acta Aerodynamica Sinica, 1995, 13(1): 110–116.

    [16]

    LIN J C, HOWARD F G, SELBY G V. Small submerged vortex generators for turbulent flow separation control[J]. Journal of Spacecraft and Rockets, 1990, 27(5): 503–507. doi: 10.2514/3.26172

    [17]

    PUJALS G, DEPARDON S, COSSU C. Drag reduction of a 3D bluff body using coherent streamwise streaks[J]. Experiments in Fluids, 2010, 49(5): 1085–1094. doi: 10.1007/s00348-010-0857-5

    [18]

    MA X Y, GEISLER R, SCHRÖDER A. Experimental investigation of three-dimensional vortex structures down-stream of vortex generators over a backward-facing step[J]. Flow, Turbulence and Combustion, 2017, 98(2): 389–415. doi: 10.1007/s10494-016-9768-8

    [19]

    YAO C, LIN J, ALLEN B. Flowfield measurement of device-induced embedded streamwise vortex on a flat plate[C]//Proc of the 1st Flow Control Conference, St. Louis, Missouri. 2002. doi: 10.2514/6.2002-3162

    [20]

    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aero-space Sciences, 2002, 38(4-5): 389–420. doi: 10.1016/S0376-0421(02)00010-6

    [21]

    ASHILL P R, FULKER J L, HACKETT K C. A review of recent developments in flow control[J]. The Aeronautical Journal, 2005, 109(1095): 205–232. doi: 10.1017/s0001924000005200

    [22]

    ZAMAN K B M Q, HIRT S M, BENCIC T J. Boundary layer flow control by an array of ramp-shaped vortex generators[R]. NASA/TM—2012-217437, 2012.

    [23] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1): 11–21.

    CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 11–21.

    [24]

    GIBERTINI G, BONIFACE J C, ZANOTTI A, et al. Helicopter drag reduction by vortex generators[J]. Aerospace Science and Technology, 2015, 47: 324–339. doi: 10.1016/j.ast.2015.10.004

    [25] 张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4): 37–41. DOI: 10.11729/syltlx20150157

    ZHANG J, LIU J Y, ZHANG B Q. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37–41. doi: 10.11729/syltlx20150157

    [26] 易海明, 申俊琦, 潘翀, 等. 平流层飞艇纵向气动特性及减阻实验研究[J]. 空气动力学学报, 2014, 32(5): 641–645,653. DOI: 10.7638/kqdlxxb-2013.0032

    YI H M, SHEN J Q, PAN C, et al. Experimental investigation on the longitudinal aerodynamic performance and drag reduction of a stratospheric airship[J]. Acta Aerodynamica Sinica, 2014, 32(5): 641–645,653. doi: 10.7638/kqdlxxb-2013.0032

    [27]

    CHAUHAN K A, MONKEWITZ P A, NAGIB H M. Criteria for assessing experiments in zero pressure gradient boundary layers[J]. Fluid Dynamics Research, 2009, 41(2): 021404. doi: 10.1088/0169-5983/41/2/021404

    [28]

    WANG S, GHAEMI S. Three-dimensional wake of non-conventional vortex generators[J]. AIAA Journal, 2019, 57(3): 949–961. doi: 10.2514/1.j057420

    [29]

    PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. doi: 10.1007/s11433-015-5719-y

    [30] 陈启刚, 钟强. 体视粒子图像测速技术研究进展[J]. 水力发电学报, 2018, 37(8): 38–54.

    CHEN Q G, ZHONG Q. Advances in stereoscopic particle image velocimetry[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 38–54.

    [31]

    FEI R, MERZKIRCH W. Investigations of the measurement accuracy of stereo particle image velocimetry[J]. Experi-ments in Fluids, 2004, 37(4): 559–565. doi: 10.1007/s00348-004-0843-x

    [32] 陈钊, 郭永彩, 高潮. 三维PIV原理及其实现方法[J]. 实验流体力学, 2006, 20(4): 77–82, 105. DOI: 10.3969/j.issn.1672-9897.2006.04.015

    CHEN Z, GUO Y C, GAO C. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77–82, 105. doi: 10.3969/j.issn.1672-9897.2006.04.015

    [33]

    WATANABE T, ZHANG X, NAGATA K. Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation[J]. Computers & Fluids, 2019, 194: 104314. doi: 10.1016/j.compfluid.2019.104314

    [34] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. DOI: 10.7638/kqdlxxb-2021.0450

    GAO N, LIU X H. A review of wall-shear-stress measure-ment techniques for practical applictions[J]. Acta Aero-dynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450

    [35]

    LIU X H, LI Z Y, GAO N. An improved wall shear stress measurement technique using sandwiched hot-film sensors[J]. Theoretical and Applied Mechanics Letters, 2018, 8(2): 137–141. doi: 10.1016/j.taml.2018.02.010

    [36]

    LIU X H, LI Z Y, WU C J, et al. Toward calibration-free wall shear stress measurement using a dual hot-film sensor and Kelvin bridges[J]. Measurement Science and Tech-nology, 2018, 29(10): 105303. doi: 10.1088/1361-6501/aadb1b

    [37]

    LIU X H, WANG H, WU C J, et al. On the calibration-free two-component wall-shear-stress measurement technique using dual-layer hot-films[J]. Review of Scientific Instru-ments, 2020, 91(8): 085004. doi: 10.1063/5.0006705

    [38] 徐华舫. 空气动力学基础(上册)[M]. 修订版. 北京: 北京航空学院出版社, 1987.
    [39] 王建杰, 易海明, 潘翀, 等. 粗糙壁湍流研究现状综述[J]. 空气动力学学报, 2017, 35(5): 611–619. DOI: 10.7638/kqdlxxb-2017.0033

    WANG J J, YI H M, PAN C, et al. Progress in rough-wall turbulence[J]. Acta Aerodynamica Sinica, 2017, 35(5): 611–619. doi: 10.7638/kqdlxxb-2017.0033

    [40]

    ZHANG Q F, PAN C, WANG J J. De-asymmetry of small-scale motions in wall-bounded turbulence[J]. Physics of Fluids, 2022, 34(6): 065110. doi: 10.1063/5.0092548

    [41]

    DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160

    [42]

    WANG L W, PAN C, WANG J J, et al. Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2022, 944: A26. doi: 10.1017/jfm.2022.495

    [43]

    BAI H L, GONG J L, LU Z B. Energetic structures in the turbulent boundary layer over a spanwise-heterogeneous converging/diverging riblets wall[J]. Physics of Fluids, 2021, 33(7): 075113. doi: 10.1063/5.0055767

图(10)  /  表(2)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  54
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-06
  • 录用日期:  2023-05-09
  • 刊出日期:  2023-08-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭