Abstract:
In the environment of large crosswind or wind shear, the aircraft, high-speed rail, trucks, ships and other vehicles may rollover, which may cause safety accidents. For the crosswind or wind shear phenomenon, the existing technology mainly studies, monitors and gives early warning from the atmospheric macro environment, and often cannot accurately perceive the random aerodynamic load or sudden flow around the vehicle itself. We take the van truck as the research object, and propose a real-time sensing method of on-board aerodynamic force/moment based on the distributed pressure information on the surface. By measuring the distributed pressure on the body surface, the rolling moment coefficient of the characteristic section is obtained, so as to judge the rolling moment of the truck in the crosswind environment. The wind tunnel test results show that the rolling moment coefficient of the pressure tap section located at 0.15
L of the vehicle body is highly related to the rolling moment coefficient of the whole vehicle model, which can be used as a characteristic section to sense and judge its rolling moment, and we also use multiple section fitting to sense the rolling moment, which is more accurate than single section fitting, but needs to monitor the pressure at more positions of the body surface.