Progress in complex combustion field diagnostics based on on-line mass spectrometry technology
-
摘要: 燃烧场通常是气−固−液三相耦合的复杂体系,其燃烧诊断结果可支撑提高燃烧效率和降低污染物排放的研究。为了使燃烧诊断结果更加精确,先进的检测方法和检测系统必不可少。在线质谱仪具有灵敏度高、分析速度快、检测范围广等优点,可用于高温、高压等严苛条件下的燃烧场诊断,能够获得更全面的诊断信息。本文对近年来在线质谱仪质量分析器、电离源和取样系统等关键技术的发展概况进行了总结,列举了在线质谱技术在燃烧场火焰产物组分浓度和火焰温度测量中的应用,对在线质谱技术在复杂燃烧场诊断方面面临的挑战和发展前景进行了分析。Abstract: The combustion field is usually a complex system of gas-solid-liquid triphase coupling, and the results obtained from combustion diagnostic can support the researches to improve combustion efficiency and reduce pollutant emissions. In order to make the measurement results more accurate, it is urgent to develop advanced detection methods and detection systems. After several years of development, on-line mass spectrometry has the advantages of high sensitivity, fast analysis speed and wide detection range. It can be used for combustion flow field diagnostics under severe conditions such as high temperature and pressure, and can obtain more comprehensive and sensitive diagnostic information. Firstly, this paper summarized the development of key technologies, e.g., analyzer, ionization source, and sampling systems for on-line mass spectrometry in recent years. Secondly, the applications of on-line mass spectrometry on the measurement of flame component concentration and flame temperature in combustion field were enumerated. On this basis, the challenges and development prospects of the on-line mass spectrometry in complex combustion field diagnostics were summarized, which could provide reference for the relevant researchers.
-
0 引 言
1. 热线风速仪基本原理
热线风速仪在湍流研究中发挥了重要的作用[1–3]。该技术利用流场中长($ l $)1 ~ 2 mm、直径($ d $)1 ~ 5 μm的钨丝或铂丝作为敏感单元(称为探头或探针,图1),通过测量流经探头的电流来确定风速。热线风速仪包括探头和测量仪2个主要组成部分。
探头的电阻值与其温度有关:当参考温度$ {T}_{\mathrm{r}\mathrm{e}\mathrm{f}}={20} $ ℃时,电阻值为$ {R}_{\mathrm{w},\mathrm{r}\mathrm{e}\mathrm{f}} $;当电流将探头加热至工作温度$ {T}_{\mathrm{w}} $时, 其工作电阻$ {R}_{\mathrm{w}} $(式(1))升高。
$$ {R}_{\mathrm{w}}/{R}_{\mathrm{w},\mathrm{r}\mathrm{e}\mathrm{f}}=1 + \alpha \left({T}_{{\rm{w}}}-{T}_{\mathrm{r}\mathrm{e}\mathrm{f}}\right) $$ (1) 式中, α为金属钨的温度电阻系数,为0.0045 ℃−1。探头工作电阻与参考电阻之比$ \;{\beta =R}_{\mathrm{w}}/{R}_{\mathrm{w},\mathrm{r}\mathrm{e}\mathrm{f}} $,被称为“过热比”。通过设定探头过热比,可设定探头工作温度。
恒温型热线风速仪(Constant-Temperature Anemometry, CTA)是最为常见的测量仪,其测量原理如图2所示。CTA的核心是一个用来加热探头的惠斯通电桥,由电阻$ {R}_{1} $、$ {R}_{2} $,变阻器$ {R}_{3} $,探头$ {R}_{\mathrm{w}} $和附加电阻$ {R}_{\mathrm{L}} $(导线与两端接口接触电阻之和)组成。CTA利用反馈系统保持电桥平衡,即电桥左侧电位($ {E}_{1} $)与右侧电位($ {E}_{2} $)差$ \varepsilon $为0。这样,就可通过改变$ {R}_{3} $设定探头电阻值,进而设定探头工作温度$ {T}_{\mathrm{w}} $:
$$ {R}_{\mathrm{w}}={(R}_{1}/{R}_{2}){R}_{3}-{R}_{\mathrm{L}} $$ (2) 由于探头温度保持不变,且反馈系统具有极高的响应频率(约500 kHz),CTA对流速变化响应很快,配平良好的CTA可测量200 kHz以上的流速变化[4]。
2. 热线风速仪标定及相关问题
CTA使用前需要进行标定,以建立输出电压E(通常是桥顶电压$ {E}_{{\rm{t}}} $经增益、偏置、滤波等信号调制操作后的电压)与风速U的关系。标定基本过程如下:CTA参数(工作温度、桥路反馈参数、信号调制参数等)设定以后,将热线放置于已知速度区域,记录来流速度U和输出电E(若无输出调制,输出即为桥顶电压);改变来流速度并重复实验;在获得多组风速和输出电压后,通过幂级数法(power-law fit)或多项式曲线法(polynomial fit)建立来流速度与输出电压的关系式[5]。幂级数法依靠来流速度$ U $与电压$ {E}^{2} $的幂级数关系建立(king’s law[6]):
$${E}^{2}=a{U}^{n} + b $$ (3) 式(3)上式涉及3个参数a、b、n,所以标定过程复杂,n通常被假设为0.5[6]或0.45[7-8]。因自然对流的存在,当来流速度为0时,b值偏离应有的零点,无法确定准确的b值。针对这一问题,George等[8]提出多项式曲线法:
$$ U={c}_{0} + {c}_{1}E + {c}_{2}{E}^{2} + {c}_{3}{E}^{3} + {c}_{4}{E}^{4}$$ (4) 式中,$ {c}_{0} $ ~$ {c}_{4} $ 为四次多项系数。该方法的使用便利性优于幂级数法[8]。
气流温度变化对热线测量结果有很大影响。测量时,当气流温度T0发生变化,与标定时的气流温度$ {T}_{\mathrm{c}} $不再相同时,式(4)便不能正确反映电压与气流速度的关系,从而出现较大幅值的测量误差[5]。Bremhorst[9]指出:每1 ℃的温度变化会带来2%的速度测量变化。鉴于此,Bruun[10]提出了一种补偿方法,利用无量纲温变幅度来修正输出电压(式(5)),获得了广泛应用:
$$ {E}_{\mathrm{c}}=E{\left(\frac{{T}_{\mathrm{w}}-{T}_{\mathrm{{\rm{c}}}}}{{T}_{\mathrm{w}}-{T}_{\mathrm{{\rm{0}}}}}\right)}^{0.5} $$ (5) 将修正后的电压$ {E}_{{\rm{c}}} $代入式(4)即可获得修正后的速度。虽然该方法能在一定程度上修正温差$({T}_{\mathrm{c}}-{T}_{0})$的影响,但当温差超过$ {3} $ ℃后,该方法会造成过度修正(over correction)[11]。温度变化对测量结果的影响一直是限制热线风速仪推广(尤其是在工业中)的主要原因。
探头工作温度与来流温度差(${T}_{{\rm{w}}}-{T}_{{\rm{0}}}$)越大,CTA输出电压E就越大。Hultmark等[11]据此提出标定$ U/\nu $与$ E/k\left({T}_{{\rm{w}}}-{T}_{0{\rm{}}}\right) $之间的关系,其中,$ \nu $和$ k $分别为空气动力黏度系数和导热系数,其值按照热线风速仪工作温度和来流温度的均值Tm[$ {T}_{\mathrm{m}}=\left({T}_{\mathrm{w}} + {T}_{0}\right)/2] $,从空气性质表中查询。Hultmark等[11] 发现该标定方法在$ \left({T}_{\mathrm{c}}-{T}_{0} \right)$ < 15 ℃时测量精度良好。虽然该方法的效果优于其他方法,但仍未能从根本上提高热线风速仪使用的便利性和可靠性,$ 15\;\mathrm{℃} $的温差仍然不能满足需求。
3. 免标定方法及其实现的障碍
利用流速与对流换热理论模型直接计算流动速度可能使热线测量更加便利。这样,可通过监测CTA的桥顶电压$ {E}_{\mathrm{t}} $和来流温度$ {T}_{0} $获得来流速度,从而省略标定过程。但目前此方法还存在一些障碍。
实现上述免标定热线测量的第一个理论障碍是目前还没有非常精确的圆柱对流换热理论模型。圆柱的强迫对流换热强度通常表示为[12]:
$$ Nu=a{Re}^{n} + b $$ (6) 式中,$ Nu $为努塞尔数,$ Re $为雷诺数,$ h $为对流换热强度,$ Q $为发热量,计算公式分别为:
$$ Nu=\frac{hd}{k} $$ (7) $$ Re=\frac{ud}{\nu } $$ (8) $$h=\frac{Q}{\left({T}_{\mathrm{w}}-{T}_{{\rm{0}}}\right)A} $$ (9) $$ Q={\left(\frac{{E}_{t}}{{R}_{\mathrm{w}}{ \;+\; R}_{{\rm{L}}}{ \;+\; R}_{1}}\right)}^{2}{R}_{\mathrm{w}} $$ (10) 式中:热线表面积$ A=\mathrm{\pi }dl $。Hilpert [12]提出:当Re = 4 ~ 40(直径5 μm钨丝对应的速度范围为20 ~ 200 m/s时,式(6)中的常数可为a = 0.911、b = 0、n = 0.385。可利用桥顶电压$ {E}_{\mathrm{t}} $,使用式(6) ~ (9)计算流速$ u $。
Hilpert 模型的雷诺数范围不适合20 m/s以下的低速流动。另外,Collis等[13]指出式(6)不能完全描述探头与气流温差($ {{T}}_{\mathrm{w}}-{T}_{0} $)带来的影响:温差不同,对应的常数a、b、n也不同。为解决这一问题,Collis等[13]提出了带有温度修正项的换热强度公式:
$$Nu{\left(\frac{{T}_{{\rm{m}}}}{{T}_{0}}\right)}^{-0.17}=0.56{Re}^{0.45} + 0.24 $$ (11) 式中:温度为兰金温标(R),非摄氏度和华氏度。Collis的方法有效拟合了该文中的实验数据,但此后多项研究发现该温度项无法拟合实验数据[7-8, 14]。时至今日,仍未出现能有效描述流速与传热关系的物理模型,缺少物理模型是热线便捷测量的理论障碍。
实现上述免标定热线测量的第二个理论障碍是无法全面描述通过2个支杆的导热损失。由于低温金属支杆的存在,金属丝展向温度分布并不均匀。式(6)中的常数项b很可能与导热损失相关联:当雷诺数降低后,传热以导热和自然对流为主。Hultmark等[11] 指出:当流速超过0.1 m/s,自然对流相对于强迫对流可忽略不计。所以,当流速趋近于0.1 m/s时,常数项b将体现导热损失强度。关于导热损失,Bruun[10]指出直径5 µm、长1.25 mm的探头约有15%的长度受支架“吸热”影响而低于平均温度。Ligrani等[15]提出探头长径比($ l/d $)需大于260才能有效减小支架的影响,保证系统频响。但探头过大会降低热线测量的空间分辨率。
除了理论障碍以外,使用电压输出直接计算风速还存在一些技术障碍。首先,多数热线风速仪使用旋钮式可调电位器调节$ {R}_{3} $来设定$ {R}_{\mathrm{w}} $,难以实现精确设定;其次,大多数热线风速仪还使用可调电位器来调节放大、偏置。因为调节的误差,这2个功能难以完全取消,导致桥顶电压测量误差。
近期出现的新型热线风速仪(如航华CTA04)可实现工作电阻$ {R}_{\mathrm{w}} $的精确设定和输出信号调制的便捷关闭,从而解决了技术障碍。本文利用该热线风速仪开展单丝热线探头散热量与流速关系的研究。首先,结合文献中能够获得的相关数据,提出小雷诺数($ \mathrm{R}\mathrm{e}\leqslant 4.5 $)条件下的圆柱强迫换热模型(式(6))和温差补偿方法(式(11));其次,讨论免标定的热线风速仪测量的技术细节;最后,利用低湍流度自由来流、湍流边界层、钝体尾流等3组实验数据来验证该方法的可行性。
1 实验方法
实验在加拿大新布伦瑞克大学(University of New Brunswick, Fredericton, New Brunswick, Canada)机械工程系直流闭口风洞内开展。该风洞试验段截面为60 cm × 60 cm,长3 m,收缩段面积比16,最大速度30 m/s。实验段湍流度低于0.3%。水银温度计显示室温$ {T}_{0} $ = 23 ℃。
实验中使用了2个直径都为5 µm但长度不同的钨丝热线探头(航华HW1A)。显微镜下测量2个探头的长度分别为0.98 mm(探头1)和1.50 mm(探头2)。在室温环境下使用万用表(FLUKE 15B)测量电阻的初始值$ {R}_{0} $,并利用式(1)换算成$ {T}_{\mathrm{r}\mathrm{e}\mathrm{f}}={20} $ ℃条件下的参考值(冷态电阻)。探头1和2的冷态电阻分别为3.72和5.60 Ω 。
探头通过2个迷你香蕉头插口与一条长2 m的屏蔽导线相连,导线另一端通过两芯航空插头(LEMO connector)连接风速仪。本研究中,导线与两端接口接触电阻之和$ {R}_{{\rm{L}}} $小于0.1 Ω,可忽略不计。
本文使用航华CTA04风速仪,该风速仪$ {R}_{1} $为 50 Ω,R2为500 Ω;采用内部继电器阵列设定$ {R}_{3} $阻值,设定范围为1$ ~1\;999 $ Ω,对应$ {R}_{\mathrm{w}} $工作电阻范围为0.1 ~ 199.9 Ω。$ {R}_{\mathrm{w}} $设定的分辨率为0.1 Ω。实验中设定过热比$ \;\beta $ = 1.1 ~ 2.0,对应探头温度$ {T}_{\mathrm{w}} $ = 45.7 ~ 250.3 ℃。
本文包括6组独立实验(实验细节如表1所示)。前4组为热丝对流换热强度研究实验。实验1 ~ 3组中,探头1置于风洞实验段入口中部(每组实验使用不同的过热比),而实验4则利用探头2进行类似测量。
表 1 实验参数列表Table 1 List of experiments in this work实验组别 探头 过热比 风速/(m·s−1) 流动情况 1 #1 1.4 0 ~ 18.0 均匀来流 2 #1 1.6 0 ~ 18.0 均匀来流 3 #1 1.8 0 ~ 18.0 均匀来流 4 #2 1.6 0 ~ 18.0 均匀来流 5 #2 1.6 14.7 湍流边界层 6 #1 1.6 14.7 钝体尾流 实验1 ~ 4利用电脑和数据采集卡(National Instrument USB 6210)采集不同风速条件下热线风速仪输出的桥顶电压$ {E}_{\mathrm{t}}\left(t\right) $,采集频率为8192 Hz,采样时间为60 s。实验数据处理过程如下:首先通过式(2)计算$ {R}_{\mathrm{w}} $,再使用式(1)计算$ {T}_{\mathrm{w}} $,然后利用$ {E}_{{\rm{t}}}\left(t\right) $根据式(7) ~ (10)计算流速$ u\left(t\right) $及其时均值$\bar u $,进而计算$ Re $和$ Nu $。以上计算中使用的空气性质对应$ {T}_{{\rm{m}}}= \left({T}_{{\rm{w}}} + {T}_{{\rm{0}}}\right)/2 $的温度状态。在完成实验1 ~ 4后,通过拟合$ Re $、$ Nu $、$ {T}_{{\rm{m}}} $,提出无量纲关系。
实验5和6为免标定测量方法验证实验,分别在湍流边界层和钝体尾流中开展。实验5中,坐标架带动探头在距风洞底板1 ~ 50 mm之间测量,测点间距1 mm,测量位置距实验段入口1 m;来流速度14.7 m/s,本地雷诺数超过临界雷诺数,边界层状态为湍流。实验6中,探头1位于1个直径2.54 cm、高50 cm圆柱的下游30.5 cm处,距离壁面3 cm;来流速度14.7m/s,探头处于边界层与圆柱尾流形成的复杂流场中。实验5和6中,过热比均为1.6。采集热线风速仪输出的桥顶电压,再使用式(7) ~ (10)计算Nu,然后利用本文提出的无量纲关系计算$ Re $,进而获得流速$ u\left(t\right) $及其时均值$\bar u $,以及表征湍流强度的标准差$ u{'} $。
在实验5和6中,使用速度数据计算数据的功率谱密度$ {F}_{uu}\left(f\right) $:
$$ {F}_{uu}\left(f\right)=\frac{1}{T}{\left|\hat{u}\left(f,T\right)\right|}^{2} $$ (12) 式中,$\hat{u}\left(f,T\right)$为采集时长T = 1 s 的一组速度信号$ u\left(t\right) $的傅里叶变换:
$$ \hat{u}\left(f,T\right)={\int }_{0}^{T}u\left(t\right){\mathrm{e}}^{-i2\mathrm{\pi }ft}{\rm{d}}t $$ (13) 本文得到的功率谱为60组独立数据的均值,计算过程详见文献[10]。
2 结果与讨论
2.1 热线探头的传热规律
第1~4组实验的结果如图3(a)所示。该图纵坐标为桥顶电压的平方,探头1在3个不同过热比下工作。首先,相同风速条件下,桥顶电压会随着过热比的增大而增大。系统输出更大的电流以将探头加热到更高的工作温度;其次,当工作温度不变时,风速增大,桥顶电压将增大以维持探头工作温度。探头2输出电压的变化趋势与探头1相似。由于长度、冷态电阻等参数不同,在相同过热比条件下,2个热线探头的桥顶电压数值不相同。
图3(b)为无量纲化的第1~3组实验的结果。图3横轴为$ {Re}^{0.45} $,指数0.45 是依照多数文献[8, 13, 16]结果选择的;纵轴为无量纲化的换热系数Nu。 由图可见:Nu随$ {Re}^{0.45} $增大呈线性增大趋势。不同工作温度下,Nu随$ {Re}^{0.45} $增大的斜率相近。当雷诺数不变时,Nu随探头工作温度$ {T}_{\mathrm{w}} $的上升而减小,这说明Nu需要进一步根据$ {T}_{\mathrm{w}} $进行修正。通过线性插值计算了与$ {Re}^{0.45}=1.4 $对应的Nu,差值点在图3(b)中以“×”标出。
图4为图3中Nu随$ {T}_{\mathrm{m}}/{T}_{\mathrm{r}\mathrm{e}\mathrm{f}} $的变化情况。处理时,为了降低复杂程度,突出探头工作温度变化的影响,选取了固定的参考温度$ {T}_{\mathrm{r}\mathrm{e}\mathrm{f}}= $ $ {20} $ ℃,而不是来流温度$ {T}_{0} $。通过对图4的数据进行拟合,可知探头工作温度对Nu的影响为:
$$ Nu{\left(\frac{{T}_{\mathrm{m}}}{{T}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\right)}^{0.16}=f \left(Re\right)$$ (14) 为了获得Re与Nu之间关系,汇总了实验1~4的数据并将其以无量纲形式显示在图5中。图5为本文核心结果,纵轴为无量纲化的换热系数,并经过工作温度修正,横轴则为$ {Re}^{0.45} $。图5中给出了文献 [7-8, 14] 中的数据以方便对比。这些数据的采集环境、实验设备等有很大差异(表2),文献中的展示形式也不尽相同,因此根据文献提供的参数对这些数据进行了重新计算。
表 2 实验参数及线性拟合结果Table 2 Parameters for each test and results of the linear fitting数据来源 过热比 钨丝长度/mm 室温/oC a b 探头1 1.4 0.98 23.0 0.994 1.274 探头1 1.6 0.98 23.0 1.021 1.258 探头1 1.8 0.98 23.0 1.001 1.190 探头2 1.6 1.50 23.0 0.950 0.904 Morrison[7] 1.6 2.00 0.906 0.834 Morrison[7] 1.8 2.00 0.950 0.807 Morrison[7] 2.2 2.00 0.952 0.876 Koch[14] 1.5 1.15 20.7 0.962 0.782 Koch[14] 1.7 1.15 20.7 0.920 0.844 Koch[14] 1.9 1.15 20.7 0.894 0.854 George[8] 1.5 24.5 1.178 0.953 George[8] 1.5 47.5 1.255 1.006 平均 0.999 0.965 图5展现出若干明显的规律。1)探头1在不同过热比条件下的数据重合在一起,说明$ {({T}_{\mathrm{m}}/{T}_{\mathrm{r}\mathrm{e}\mathrm{f}})}^{0.16} $有效补偿了探头工作温度变化对Nu的影响。2)文献[7, 14]中数据的基本规律与本次实验结果一致,且与探头2数据(第4组实验)基本重合。这在一定程度上说明热线测量具有可重复的规律,利用该规律形成统一的标定结果具有可行性。3)各组数据及文献数据的线性拟合结果(见表2和图5虚线)表明:探头1数据拟合线的截距(对应式(6)中的b值)比探头2及文献数据拟合线的截距大30%左右。这与探头1长度较短有关,较短的长度对应较大的相对热损失。4)本次实验中,2个探头及文献[7, 14]数据的斜率在0.89 ~ 1.02之间,相差较小,说明支架导热仅对截距b影响较大,对斜率a影响较小。
为了获得统一的拟合数据,对表2中所有拟合结果(包括文献[7-8, 14]的数据)进行平均,得到了描述Re与Nu关系的物理模型:
$$ Nu{\left(\frac{{T}_{{\rm{m}}}}{{T}_{{\rm{ref}}}}\right)}^{0.16}=0.999{Re}^{0.45} + 0.965 $$ (15) 该模型对应的曲线为图5中蓝色实线。尽管各文献的实验条件差别很大,但该模型对本文及文献[7-8, 14]中的数据仍具有一定代表性。在验证实验中,将利用桥顶电压Et根据式(7) ~ (10)和式(15)直接计算流速。
2.2 验证实验
本节将基于实验5和6的结果分别使用新方法(式(15))和传统方法(四次多项式)获得速度数据并进行对比,新方法所得数据标称为“估测数据”(estimated),传统方法所得数据标称为“真实数据” (calibrated)。
第一个对比实验(实验5)利用探头2对边界层内速度分布进行测量,图6为其均值结果对比。估测速度与真实速度分布曲线基本吻合,差异在3.7%以内;脉动速度w′分布曲线的估测值也与真实值基本吻合,差异在4%以内。均值和脉动值的估测值与真实值的最大差异均出现于远离壁面区域,该处本地速度较大,差异也较大。估测速度略低于真实速度,这与图5中结果平均曲线在探头2数据上方相符,即在特定的换热强度下,估测雷诺数低于真实雷诺数。
图7 (a)为在近壁点(y = 1 mm)随机选取的一段0.1 s时长的瞬时速度分布曲线,其估测值与真实值基本重合(峰值和谷值处稍有偏差)。图7 (b)为近壁点(y = 1 mm)脉动速度功率谱密度分布,由图可见,估测的功率谱密度与真实的功率谱密度幅值基本吻合。
第二个对比实验(实验6)对比了热线探头1所获复杂流场的估测速度与真实速度,结果如图8所示。图8(a)显示估测速度与真实速度差异较大:估测速度均值(13.7 m/s)比真实速度均值(11.1 m/s)高约23%。与探头2的结果相比,探头1的估测值偏离真实值更多,这可能与探头1长度较短、造成了较大的相对导热损失有关,也可能与冷态电阻的测量精度、导线和接触电阻的不确定性有关。
3 结 论
本文对直径都为5 μm但长度不同的的钨丝在114 ~ 205 ℃范围内与室温来流之间的换热强度进行了实验研究。通过分析实验结果并与相关文献[7-8, 14]数据比对后发现:
1) 当钨丝温度不变时,无量纲对流换热强度Nu与雷诺数$ {Re}^{0.45} $存在线性关系(式(6))。
2) 当钨丝温度变化时,需使用钨丝与来流的平均温度$ {\left({T}_{{\rm{m}}}/{T}_{{\rm{ref}}}\right)}^{0.16} $对Nu进行修正。修正后的值与$ {Re}^{0.45} $存在线性关系(式(15))。
3) 当Re趋近于0时,探头发出的热量以热传导形式为主传出探头。长度较短的探头相对导热强度较大,式(15)右侧的常数项b值较大;但探头长度对式(15)右侧的一次项系数a(测量敏感度)影响较小。
4) 本文实验结果与文献结果的相似性说明:存在描述热线探头Nu与Re关系的统一模型(式(15))。基于该模型,可以利用单丝热线风速仪的输出电压、来流温度等易测量参数来计算来流速度大小,从而实现无需标定的单丝热线测量。
5) 本文所提方法的一个主要特点是对热线风速仪工作温度变化、来流温度变化不敏感,与传统方法相比,抗干扰能力得到提高。
本文初步指出了一种免标定单丝热线测速法的可行性,但目前该方法还存在一定局限性,真正实现该方法还需要解决多个关键问题:1)由于存在通过2个支架的导热损失,而探头越短,导热损失造成的误差越大,统一模型(式(15))对小尺寸探头测量结果的估测会严重偏低;2)目前该方法仅能应用于单丝热线探头,还不能扩展至基于多丝热线探头的速度矢量测量;3)目前还缺乏对该方法误差的全面分析,热线探头导线电阻、接触电阻对测量不确定性的影响还不清楚。这些都需要在未来展开深入研究。
-
-
[1] 刘兵, 董丰硕, 刘瑞东, 等. 真空紫外光电离质谱技术进展及其在快速分析中的应用[J]. 分析测试学报, 2021, 40(2): 208–214. DOI: 10.3969/j.issn.1004-4957.2021.02.006 LIU B, DONG F S, LIU R D, et al. Progress of vacuum ultraviolet photon ionization mass spectrometry and its application in on-line analysis[J]. Journal of Instrumental Analysis, 2021, 40(2): 208–214. doi: 10.3969/j.issn.1004-4957.2021.02.006
[2] DANG M, LIU R D, DONG F S, et al. Vacuum ultraviolet photoionization on-line mass spectrometry: instrumentation developments and applications[J]. Trac-Trends in Analytical Chemistry, 2022, 149: 116542. doi: 10.1016/j.trac.2022.116542
[3] DONG F S, LI H, LIU B, et al. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia[J]. Journal of Environmental Sciences, 2022, 114: 66–74. doi: 10.1016/j.jes.2021.07.023
[4] ZHU S N, YAN C, ZHENG J, et al. Observation and source apportionment of atmospheric alkaline gases in urban Beijing[J]. Environmental Science & Technology, 2022, 56(24): 17545–17555. doi: 10.1021/acs.est.2c03584.
[5] COOL T A, MCILROY A, QI F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Review of Scientific Instruments, 2005, 76(9): 094102. doi: 10.1063/1.2010307
[6] LI Y, ZHANG L, TIAN Z, et al. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy & Fuels, 2009, 23(3): 1473–1485. doi: 10.1021/ef800902t
[7] WANG S, WANG W M, LI H, et al. Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer[J]. Analytical Chemistry, 2019, 91(6): 3845–3851. doi: 10.1021/acs.analchem.8b04168
[8] CHEN W D, HOU K Y, HUA L, et al. Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives[J]. Analyst, 2015, 140(17): 6025–6030. doi: 10.1039/c5an00816f
[9] LIU B, TANG W X, LI H, et al. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children[J]. Analyst, 2022, 147(11): 2484–2493. doi: 10.1039/d2an00479h
[10] PRIETO M C, KOVTOUN V V, COTTER R J. Miniaturized linear time-of-flight mass spectrometer with pulsed extraction[J]. Journal of Mass Spectrometry, 2002, 37(11): 1158–1162. doi: 10.1002/jms.386
[11] 周丽娟. 小型飞行时间质谱的开发及射频增强化学电离源的研制[D]. 长春: 吉林大学, 2018. ZHOU L J. Development of miniature flight time mass spectrometry and radiofrequency field enhanced chemical ionization[D]. Changchun: Jilin University, 2018.
[12] 齐雅晨. 用于飞行时间质谱的膜进样及射频放电电离源的研究与应用[D]. 长春: 吉林大学, 2016. QI Y C. Development and application of membrane inlet time-of-flight mass spectrometry and radio frequency discharge ion source[D]. Changchun: Jilin University, 2016.
[13] 李金旭. 便携式飞行时间质谱的研究及其在挥发性硫化物测量中的应用[D]. 长春: 吉林大学, 2015. LI J X. Development of a portable time-of-flight mass spectrometry and its application in the measurement of volatile sulfide[D]. Changchun: Jilin University, 2015.
[14] 韩笑笑. 便携式TOFMS中VOCs快速富集冷阱研制及其应用研究[D]. 西安: 西安石油大学, 2018. H X X. Development and application of VOCs rapid enrichment cold trap in portable TOFMS[D]. Xi’an: Xi’an Shiyou University, 2018.
[15] 李庆运. 光电离飞行时间质谱仪研制及其用于催化过程监测[D]. 长春: 吉林大学, 2016. LI Q Y. Development of photoionization time-of-flight mass spectrometer and its application for catalytic reaction monitoring[D]. Changchun: Jilin University, 2016.
[16] GROSS J H. Mass Spectrometry[M]. Berlin: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-10711-5.
[17] 黄灿. 核心机理中C4组分的燃烧反应动力学机理研究[D]. 北京: 清华大学, 2019. HUANG C. Combustion kinetics of the C4 foundational fuel chemistry[D]. Beijing: Tsinghua University, 2019.
[18] 黄燕. 氮气掺混的乙烯层流同轴扩散火焰温度场与组分浓度场测量[D]. 上海: 上海交通大学, 2018. HUANG Y. Two dimensional temperature and carbon dioxide concentration profiles of nitrogen added ethylene co-flow diffusion flames measured by mid-infrared direct absorption spectroscopy[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[19] 洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43–54. DOI: 10.11729/syltlx20160177 HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnotics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43–54. doi: 10.11729/syltlx20160177
[20] 洪延姬. 燃烧场吸收光谱诊断技术研究进展[J]. 实验流体力学, 2014, 28(3): 12–25. DOI: 10.11729/syltlx2014ty02 HONG Y J. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 12–25. doi: 10.11729/syltlx2014ty02
[21] 娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1–17. DOI: 10.11729/syltlx20200063 LOU C, ZHANG L D, PU Y, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1–17. doi: 10.11729/syltlx20200063
[22] 张大源, 李博, 高强, 等. 飞秒激光光谱技术在燃烧领域的应用[J]. 实验流体力学, 2018, 32(1): 1–10. DOI: 10.11729/syltlx20170141 ZHANG D Y, LI B, GAO Q, et al. Application of femtosecond-laser spectrum technology in combustion field[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1–10. doi: 10.11729/syltlx20170141
[23] 刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43–54, 67. DOI: 10.11729/syltlx20150138 LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43–54, 67. doi: 10.11729/syltlx20150138
[24] 胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33–42. DOI: 10.11729/syltlx20170135 HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135
[25] 赵龙. 柴油类燃料若干典型分子结构的燃烧反应动力学研究[D]. 合肥: 中国科学技术大学, 2016. ZHAO L. Kinetic studies on several typical molecular structures of diesel and biodiesel fuels[D]. Heifei: University of Science and Technology of China, 2016.
[26] 卫立夏. 几种C3含氧化合物的真空紫外光电离及燃烧研究[D]. 合肥: 中国科学技术大学, 2006. WEI L X. Studies on VUV photoionization and combustion of some C3 oxygen-contained compounds[D]. Heifei: University of Science and Technology of China, 2006.
[27] 赵高升. 新型常压复合等离子体电离源-小型离子阱质谱仪的研发与应用[D]. 杭州: 浙江大学, 2022. ZHAO G S. Development and application of a noval atmospheric composite plasma ion source-miniature ion trap mass spectrometer[D]. Hangzhou: Zhejiang University, 2022.
[28] 刘兵. 便携式飞行时间质谱在现场快速分析中的应用[D]. 青岛: 山东大学, 2022. LIU B. Application of miniature time-of-flight mass spectrometer in on-line analysis[D]. Qingdao: Shandong University, 2022.
[29] 董丰硕. 化学电离飞行时间质谱实时检测氨气和有机胺的研究与应用[D]. 青岛: 山东大学, 2022. DONG F S. Development and applications of chemical ionization time-of-flight spectrometry for real-time detection of ammonia and organic amines[D]. Qingdao: Shandong University, 2022.
[30] 温作赢. 真空紫外光电离飞行时间质谱仪研制及其大气化学应用[D]. 合肥: 中国科学技术大学, 2020. WEN Z Y. Development of VUV photoionization time of flight mass spectrometer and its applications in atmospheric chemistry[D]. Heifei: University of Science and Technology of China, 2020.
[31] 李庆运. 飞行时间质谱光电离源的研制及其应用[D]. 长春: 吉林大学, 2019. LI Q Y. The development of photoionization sources for time-of-flight mass spectrometry and its application[D]. Changchun: Jilin University, 2019.
[32] 方向, 覃莉莉, 白岗. 四极杆质量分析器的研究现状及进展[J]. 质谱学报, 2005(4): 234–242. FANG X, Q L L, BAI G. An introduction to quadrupole mass filter[J]. Journal of Chinese Mass Spectrometry Society, 2005(4): 234–242.
[33] BRUNNÉE C. The ideal mass analyzer: fact or fiction?[J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 76(2): 125–237. doi: 10.1016/0168-1176(87)80030-7
[34] SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2–29. doi: 10.1021/acs.analchem.5b03070
[35] ZUBAREV R A, MAKAROV A. Orbitrap mass spectrometry[J]. Analytical Chemistry, 2013, 85(11): 5288–5296. doi: 10.1021/ac4001223
[36] SECCOMBE D P, REDDISH T J. Theoretical study of space focusing in linear time-of-flight mass spectrometers[J]. Review of Scientific Instruments, 2001, 72(2): 1330–1338. doi: 10.1063/1.1336824
[37] SARUGAKU S, ARAKAWA M, TERASAKI A. Space focusing extensively spread ions in time-of-flight mass spectrometry by nonlinear ion acceleration[J]. International Journal of Mass Spectrometry, 2017, 414: 65–69. doi: 10.1016/j.ijms.2017.01.003
[38] WANG T, CHU C, HUNG H, et al. Design parameters of dual-stage ion reflectrons[J]. Review of Scientific Instruments, 1994, 65(5): 1585–1589. doi: 10.1063/1.1144896
[39] MAMYRIN B A, KARATAEV V I, SHMIKK D V, et al. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution[J]. Journal of Experimental and Theoretical Physics, 1973, 37(1): 45.
[40] SUGIYAMA E, HARA A, UEMURA K. A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction[J]. Analytical Biochemistry, 1999, 274(1): 90–97. doi: 10.1006/abio.1999.4245
[41] WANG B H, HOPKINS C E, BELENKY A B, et al. Sequencing of modified oligonucleotides using in-source fragmentation and delayed pulsed ion extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 169-170: 331–350. doi: 10.1016/S0168-1176(97)00232-2
[42] MOWAT I A, DONOVAN R J, MAIER R R J. Enhanced cationization of polymers using delayed ion extraction with matrix-assisted laser desorption/ionization[J]. Rapid Communications in Mass Spectrometry, 1997, 11(1): 89–98. doi: 10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G
[43] GUILHAUS M, SELBY D, MLYNSKI V. Orthogonal acceleration time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2000, 19(2): 65–107. doi: 10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E
[44] YILDIRIM M, SISE O, DOGAN M, et al. Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing[J]. International Journal of Mass Spectrometry, 2010, 291(1): 1–12. doi: 10.1016/j.ijms.2009.12.014
[45] TIAN Y L, WANG Y S, WANG J Y, et al. Designing a multi-reflection time-of-flight mass analyzer for LPT[J]. International Journal of Mass Spectrometry, 2016, 408: 28–32. doi: 10.1016/j.ijms.2016.08.013
[46] WILEY W C, Mclaren I H. Time-of-flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26(12): 1150–1157. doi: 10.1063/1.1715212
[47] DODONOV A F, KOZLOVSKI V I, SOULIMENKOV I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer[J]. European Journal of Mass Spectrometry, 2000, 6(6): 481–490. doi: 10.1255/ejms.378
[48] TOYODA M, ISHIHARA M, YAMAGUCHI S, et al. Construction of a new multi-turn time-of-flight mass spectrometer[J]. Journal of Mass Spectrometry, 2000, 35(2): 163–167. doi: 10.1002/(SICI)1096-9888(200002)35:2<163::AID-JMS924>3.0.CO;2-G
[49] TOYODA M, OKUMURA D, ISHIHARA M, et al. Multi-turn time-of-flight mass spectrometers with electrostatic sectors[J]. Journal of Mass Spectrometry, 2003, 38(11): 1125–1142. doi: 10.1002/jms.546
[50] SATOH T, TSUNO H, IWANAGA M, et al. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory[J]. Journal of the American Society for Mass Spectrometry, 2005, 16(12): 1969–1975. doi: 10.1016/j.jasms.2005.08.005
[51] SATOH T, TSUNO H, IWANAGA M, et al. A new spiral time-of-flight mass spectrometer for high mass analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2006, 54(1): 11–17. doi: 10.5702/massspec.54.11
[52] WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217–222. doi: 10.1016/S1387-3806(03)00127-1
[53] DICKEL T, PLASS W R, BECKER A, et al. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172–188. doi: 10.1016/j.nima.2014.12.094
[54] VERENTCHIKOV A N, YAVOR M I, HASIN Y I, et al. Multireflection planar time-of-flight mass analyzer. I: an analyzer for a parallel tandem spectrometer[J]. Technical Physics, 2005, 50(1): 73–81. doi: 10.1134/1.1854827
[55] 李函蔚. 质谱光电离/光致化学电离源研究及 VOCs 在线检测应用[D]. 长春: 吉林大学, 2023. LI H W. The Development of Mass Spectrometry Photoionization/Photochemical Ionization Sources and Its Applications for Online VOCs Analysis [D]. Changchun: Jilin University, 2023.
[56] NIER A O. Some reflections on the early days of mass spectrometry at the university of minnesota[J]. International Journal of Mass Spectrometry and Ion Processes, 1990, 100: 1–13. doi: 10.1016/0168-1176(90)85063-8
[57] STEIN S E, HELLER D N. On the risk of false positive identification using multiple ion monitoring in qualitative mass spectrometry: large-scale intercomparisons with a comprehensive mass spectral library[J]. Journal of The American Society for Mass Spectrometry, 2006, 17(6): 823–835. doi: 10.1016/j.jasms.2006.02.021
[58] STEIN S E, PIERRE A, LIAS S G. Comparative evaluations of mass spectral databases[J]. Journal of the American Society for Mass Spectrometry, 1991, 2(5): 441–443. doi: 10.1016/1044-0305(91)85012-U
[59] MÜHLBERGER F, ZIMMERMANN R, KETTRUP A. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization[J]. Analytical Chemistry, 2001, 73(15): 3590–3604. doi: 10.1021/ac010023b
[60] SHI Y J, LIPSON R H. An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation[J]. Canadian Journal of Chemistry, 2005, 83(11): 1891–1902. doi: 10.1139/v05-193
[61] MÜHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790–3801. doi: 10.1021/ac0200825
[62] 温作赢, 顾学军, 林晓晓, 等. 真空紫外光电离质谱及其在大气化学中的应用研究[J]. 质谱学报, 2023, 44(2): 181–196. DOI: 10.7538/zpxb.2022.0189 WEN Z Y, GU X J, LIN X X, et al. acuum ultraviolet photoionization mass spectrometry and its wide applications in atmospheric chemistry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(2): 181–196. doi: 10.7538/zpxb.2022.0189
[63] YAP Y K, INAGAKI M, NAKAJIMA S, et al. High-power fourth-and fifth-harmonic generation of a Nd: YAG laser by means of a CsLiB6O10[J]. Optics Letters, 1996, 21(17): 1348–1350. doi: 10.1364/OL.21.001348
[64] 李奇峰, 汪华, 石勇, 等. 双光子共振四波差频产生的真空紫外激光特性研究[J]. 化学物理学报, 2004(3): 333–338. LI Q F, WANG H, SHI Y, et al. Characteristic study on VUV generated by two-photon resonant four wave mxing in xenon[J]. Chinese Journal of Chemical Physics, 2004(3): 333–338.
[65] GEHM C, STREIBEL T, EHLERT S, et al. Development and optimization of an external-membrane introduction photoionization mass spectrometer for the fast analysis of (polycyclic) aromatic compounds in environmental and process waters[J]. Analytical Chemistry, 2019, 91(24): 15547–15554. doi: 10.1021/acs.analchem.9b03480
[66] 贾良元, 周忠岳, 李玉阳, 等. 基于同步辐射光电离质谱的燃烧与能源研究新方法[J]. 中国科学: 化学, 2013, 43(12): 1686–1699. doi: 10.1360/032013-246 [67] 潘洋, 张泰昌, 齐飞. 同步辐射单光子电离技术在燃烧和其他研究中的应用[C]//长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集. 2006: 554-558. [68] 齐飞. 同步辐射真空紫外单光子电离技术及其应用[J]. 中国科学技术大学学报, 2007(Z1): 414–425. QI F. Synchrotron radiation VUV single-photon ionization technique and its applications[J]. Journal of University of Science and Technology of China, 2007(Z1): 414–425.
[69] 北京同步辐射装置介绍[J]. 现代物理知识, 2008(2): 41. [70] 吴旭, 田顺强, 张文志. 上海同步辐射光源工作点稳定性研究[J]. 原子能科学技术, 2022, 56(9): 1815–1820. DOI: 10.7538/yzk.2022.youxian.0349 WU X, TIAN S Q, ZHANG W Z. Study on tune stability of Shanghai synchrotron radiation facility[J]. Atomic Energy Science and Technology, 2022, 56(9): 1815–1820. doi: 10.7538/yzk.2022.youxian.0349
[71] 张国斌, 胡胜生, 封东来. 合肥光源[J]. 现代物理知识, 2020, 32(03): 3–9. doi: 10.13405/j.cnki.xdwz2020.03.002 [72] 周忠岳, 杨玖重, 潘洋, 等. 同步辐射真空紫外光电离质谱在燃烧和催化研究中的应用进展[J]. 质谱学报, 2021, 42(5): 598–608. DOI: 10.7538/zpxb.2021.0149 ZHOU Z Y, YANG J Z, PAN Y, et al. Recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry in combustion and catalysis research[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 598–608. doi: 10.7538/zpxb.2021.0149
[73] NORMILE D. Unique free electron laser laboratory opens in China[J]. Science, 2017, 355(6322): 235–235. doi: 10.1126/science.355.6322.235
[74] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46(1): 43–50. DOI: 10.3788/CJL201946.0100005 YU Y, LI Q M, YANG J Y, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46(1): 43–50. doi: 10.3788/CJL201946.0100005
[75] LI C, WEI S, DU X, et al. On-line spectral diagnostic system for Dalian Coherent Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 65–67. doi: 10.1016/j.nima.2015.01.089
[76] 谭国斌, 高伟, 黄正旭, 等. 真空紫外灯单光子电离源飞行时间质谱仪的研制[J]. 分析化学, 2011, 39(10): 1470–1475. doi: 10.3724/SP.J.1096.2011.01470 [77] 王健, 胡永华, 田振峰, 等. 真空紫外灯电离源飞行时间质谱仪的研制及应用[J]. 分析试验室, 2016, 35(10): 1236–1240. doi: 10.13595/j.cnki.issn1000-0720.2016.0279 [78] 赵振堂, 戴志敏, 张文志, 等. 上海粒子加速器大科学装置概述[J]. 复旦学报(自然科学版), 2023, 62(03): 293–309. [79] 李庆运, 花磊, 蒋吉春, 等. 用于催化过程在线监测的高分辨光电离飞行时间质谱仪的研制和应用[J]. 分析化学, 2015, 43(10): 1531–1537. doi: 10.11895/j.issn.0253-3820.150454 [80] 陈文东, 侯可勇, 陈平, 等. 单光子/光电子在线质谱实时分析聚氯乙烯热分解/燃烧产物[J]. 环境科学, 2013, 34(1): 34–38. DOI: 10.13227/j.hjkx.2013.01.018 CHEN W D, HOU K Y, CHEN P, et al. Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer[J]. Environmental Science, 2013, 34(1): 34–38. doi: 10.13227/j.hjkx.2013.01.018
[81] 谢园园, 花磊, 侯可勇, 等. 单光子电离质谱法在线分析牙膏中的香精物质[J]. 分析化学, 2012, 40(12): 1883–1889. doi: 10.3724/SP.J.1096.2012.20542 [82] 谢园园, 花磊, 陈平, 等. 气相色谱-单光子电离飞行时间质谱的联用及在柴油组分表征中的应用[J]. 色谱, 2015, 33(2): 188–194. DOI: 10.3724/SP.J.1123.2014.10028 XIE Y Y, HUA L, CHEN P, et al. Coupling of gas chromatography with single photon ionization time-of-flight mass spectrometry and its application to characterization of compounds in diesel[J]. Chinese Journal of Chromatography, 2015, 33(2): 188–194. doi: 10.3724/SP.J.1123.2014.10028
[83] WU Q, HUA L, HOU K, et al. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(23): 8992–8998. doi: 10.1021/ac201791n
[84] HUA L, WU Q, HOU K, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309–5316. doi: 10.1021/ac200742r
[85] HUA L, HOU K, CHEN P, et al. Realization of in-source collision-induced dissociation in single-photon ionization time-of-flight mass spectrometry and its application for differentiation of isobaric compounds[J]. Analytical Chemistry, 2015, 87(4): 2427–2433. doi: 10.1021/ac5043768
[86] CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332–1336. doi: 10.1021/ac403132k
[87] 齐雅晨, 刘巍, 蒋吉春, 等. 无窗射频放电单光子电离质谱在线监测氯苯的研究[J]. 质谱学报, 2015, 36(6): 506–512. DOI: 10.7538/zpxb.2015.36.06.0506 QI Y C, LIU W, JIANG J C, et al. On-line analysis of cholrobenzenes by windowless RF discharge signal photon ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506–512. doi: 10.7538/zpxb.2015.36.06.0506
[88] 张晓愿. 两种典型醇类燃料燃烧的实验和模型研究[D]. 合肥: 中国科学技术大学, 2016. ZHANG X Y. Experimental and kinetic modeling study of two typical alcohol fuels combustion[D]. Heifei: University of Science and Technology of China, 2016.
[89] 李天宇. 热解气氛下若干关键芳烃生成的燃料协同效应研究[D]. 合肥: 中国科学技术大学, 2017. LI T Y. Study of synergistic effect during the formation of some key aromatic hydrocarbons in pyrolysis atmosphere[D]. Heifei: University of Science and Technology of China, 2017.
[90] 孙雯禹. 几种新型含氧燃料的燃烧反应动力学研究[D]. 北京: 清华大学, 2018. SUN W Y. Investigations into the combustion kinetics of several novel oxygenated fuels[D]. Beijing: Tsinghua University, 2018.
[91] A. TAATJES C, HANSEN N, L. OSBORN D, et al. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 20–34. doi: 10.1039/B713460F
[92] LI W, WANG G, LI Y, et al. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures[J]. Combustion and Flame, 2018, 191: 126–141. doi: 10.1016/j.combustflame.2018.01.002
[93] MOSHAMMER K, JASPER A W, POPOLAN-VAIDA D M, et al. Quantification of the keto-hydroperoxide (HOOCH2OCHO) and other elusive intermediates during low-temperature oxidation of dimethyl ether[J]. The Journal of Physical Chemistry A, 2016, 120(40): 7890–7901. doi: 10.1021/acs.jpca.6b06634
[94] HANSEN N, COOL T A, WESTMORELAND P R, et al. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J]. Progress in Energy and Combustion Science, 2009, 35(2): 168–191. doi: 10.1016/j.pecs.2008.10.001
[95] 闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27–32. DOI: 10.11729/syltlx20180168 YAN B, LI M, CHEN L, et al. Experimental study on temperature measurement of high pressure combustion based on filtered rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27–32. doi: 10.11729/syltlx20180168
[96] 刘高恩, 王华芳, 吕品, 等. 飞机发动机排气污染物的测量[J]. 航空动力学报, 2003(3): 348–352. DOI: 10.13224/j.cnki.jasp.2003.03.008 LIU G E, WANG H F, LV P, et al. Gas turbine engine emissions measurement[J]. Journal of Aerospace Power, 2003(3): 348–352. doi: 10.13224/j.cnki.jasp.2003.03.008
[97] 王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. DOI: 10.13224/j.cnki.jasp.2015.11.002 WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002
[98] 李乐, 索建秦, 于涵, 等. 燃气分析系统优化设计及应用研究[J]. 西北工业大学学报, 2020, 38(1): 104–113. DOI: 10.1051/jnwpu/20203810104 LI L, SUO J Q, YU H. Optimization design and application research of gas analysis system[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 104–113. doi: 10.1051/jnwpu/20203810104
[99] ADAM T, STREIBEL T, MITSCHKE S, et al. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC and tobacco[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 454–464. doi: 10.1016/j.jaap.2004.11.021
[100] ZHOU Z Y, WANG Y, TANG X F, et al. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry[J]. Review of Scientific Instruments, 2013, 84(1): 014101. doi: 10.1063/1.4773541
[101] YANG B, OSSWALD P, LI Y, et al. Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure[J]. Combustion and Flame, 2007, 148(4): 198–209. doi: 10.1016/j.combustflame.2006.12.001
[102] YANG R, YANG B, HUANG C Q, et al. VUV photoionization study of the allyl radical from premixed gasoline/oxygen flame[J]. Chinese Journal of Chemical Physics, 2006(01): 25–28 + 93.
[103] LI Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry[J]. Accounts of Chemical Research, 2010, 43(1): 68–78. doi: 10.1021/ar900130b
[104] 李亚娟, 王明瑞, 韩冰, 等. 燃气分析法测试燃气轮机主燃烧室燃烧效率、气态污染物误差分析[J]. 航空动力学报, 2017, 32(5): 1051–1057. DOI: 10.13224/j.cnki.jasp.2017.05.004 LI Y J, WANG M R, HAN B, et al. Gas turbine primary combustor error analysis of combustion efficiency and exhaust emission using gas analysis method[J]. Journal of Aerospace Power, 2017, 32(5): 1051–1057. doi: 10.13224/j.cnki.jasp.2017.05.004
[105] 王明瑞, 王振华, 韩冰, 等. 航空发动机主燃烧室高温测试技术[J]. 航空发动机, 2016, 42(5): 87–93. DOI: 10.13477/j.cnki.aeroengine.2016.05.015 WANG M R, WANG Z H, HAN B, et al. High temperature measurement technology for main combustion chamber of aeroengine[J]. Aeroengine, 2016, 42(5): 87–93. doi: 10.13477/j.cnki.aeroengine.2016.05.015
[106] STRUCKMEIER U, OSSWALD P, KASPER T, et al. Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames[J]. Zeitschrift für Physikalische Chemie, 2009, 223(4-5): 503–537. doi: 10.1524/zpch.2009.6049
[107] SKEEN S A, YANG B, MICHELSEN H A, et al. Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1067–1075. doi: 10.1016/j.proci.2012.06.075
[108] TAO T, SUN W, HANSEN N, et al. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor[J]. Combustion and Flame, 2018, 192: 120–129. doi: 10.1016/j.combustflame.2018.01.048
[109] OSSWALD P, GÜLDENBERG H, KOHSE-HÖINGHAUS K, et al. Combustion of butanol isomers-a detailed molecular beam mass spectrometry investigation of their flame chemistry[J]. Combustion and Flame, 2011, 158(1): 2–15. doi: 10.1016/j.combustflame.2010.06.003
[110] 陶涛. 宽范围下乙醛燃烧反应动力学的实验与模型研究[D]. 北京: 清华大学, 2018. TAO T. Experimental and modeling investigations on the combustion kinetics of acetaldehyde under a wide range conditions[D]. Beijing: Tsinghua University, 2018.
[111] LIU D, TOGBÉ C, TRAN L S, et al. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I: Furan[J]. Combustion and Flame, 2014, 161(3): 748–765. doi: 10.1016/j.combustflame.2013.05.028
[112] SCHENK M, LEON L, MOSHAMMER K, et al. Detailed mass spectrometric and modeling study of isomeric butene flames[J]. Combustion and Flame, 2013, 160(3): 487–503. doi: 10.1016/j.combustflame.2012.10.023
-
期刊类型引用(0)
其他类型引用(1)